PARTICLE-DROP STRUCTURES AND METHODS FOR MAKING AND USING THE SAME

    公开(公告)号:US20250018386A1

    公开(公告)日:2025-01-16

    申请号:US18901981

    申请日:2024-09-30

    Abstract: Sub-millimeter scale three-dimensional (3D) structures are disclosed with customizable chemical properties and/or functionality. The 3D structures are referred to as drop-carrier particles. The drop-carrier particles allow the selective association of one solution (i.e., a dispersed phased) with an interior portion of each of the drop-carrier particles, while a second non-miscible solution (i.e., a continuous phase) associates with an exterior portion of each of the drop-carrier particles due to the specific chemical and/or physical properties of the interior and exterior regions of the drop-carrier particles. The combined drop-carrier particle with the dispersed phase contained therein is referred to as a particle-drop. The selective association results in compartmentalization of the dispersed phase solution into sub-microliter-sized volumes contained in the drop-carrier particles. The compartmentalized volumes can be used for single-molecule assays as well as single-cell, and other single-entity assays.

    METHODS OF ANALYZING SHAPED PARTICLES CONTAINING CELLS USING FLUORESCENCE ACTIVATED CELL SORTING

    公开(公告)号:US20240302264A1

    公开(公告)日:2024-09-12

    申请号:US18560106

    申请日:2022-05-05

    CPC classification number: G01N15/149 G01N15/1459

    Abstract: A method of analyzing shaped particles using a flow cytometer or a fluorescence activated cell sorter (FACS) includes flowing a population of shaped particles with at least some of the population of shaped particles having cells loaded therein through the flow cytometer or FACS and optically interrogating the shaped particles in the flow cytometer or FACS to measure scattered light for each shaped particle. A target shaped particle having a cell loaded therein is detected based at least in part on a measurement of forward scattered light, side scattered light, or back scattered light. The target shaped particle may also be identified with a measured fluorescence signal level. Sorting of target shaped particles may be optimized by adjusting one or more of a drop delay or a sorting mask configuration for the flow cytometer or FACS.

    SYSTEMS AND METHODS FOR THE AMPLIFIED DETECTION OF MOLECULES ON MICROPARTICLES

    公开(公告)号:US20230333114A1

    公开(公告)日:2023-10-19

    申请号:US18044371

    申请日:2021-09-08

    Abstract: A particle-based assay system is disclosed that uses hydrogel microparticles that capture analytes of interest from a sample which are subsequently bound with catalytic reporter complexes. Catalytic reporter complexes bound to the hydrogel microparticles generate signals that are accumulated in the vicinity of the hydrogel microparticle at high concentration (or on or within the hydrogel microparticles). In some circumstances, the reporter complex-bound hydrogel microparticles are encapsulated in an emulsion. Preferably, the emulsion is substantially uniform and contains one hydrogel microparticle per droplet. The accumulated signal generated by the catalytic reporter complexes is contained inside the emulsion, and/or optionally immobilized onto or inside the hydrogel microparticle. Signals are read and analyzed using optical instruments such as flow cytometers. Breaking the emulsion prior to signal analysis is optional. In some embodiments, a sample is introduced to hydrogel microparticles in a dried state to concentrate analytes of interest.

    METHODS FOR FABRICATING MODULAR HYDROGELS FROM MACROMOLECULES WITH ORTHOGONAL PHYSICO-CHEMICAL RESPONSIVITY

    公开(公告)号:US20210403649A1

    公开(公告)日:2021-12-30

    申请号:US17279283

    申请日:2019-10-18

    Abstract: Despite the significant advances in designing injectable bulk hydrogels, the inability to control the pore interconnectivity and decoupling it from the matrix stiffness has tremendously limited the applicability of stiff, flowable hydrogels for 3D cellular engineering. To address this problem, we developed a universal method to convert macromolecules and the like with orthogonal chemical and/or physical responsivity, e.g., thermosensitive macromolecules with chemically-crosslinkable moieties, into annealable building blocks, forming 3D microporous beaded scaffolds in a bottom-up approach. For example, gelatin methacryloyl (GelMA), a widely used biomaterial in tissue engineering, may be converted into physically-crosslinked microbeads using a facile microfluidic approach, followed by flow of the microbead slurry and chemical crosslinking in situ to fabricate microporous beaded GelMA (B-GelMA) scaffolds with interconnected pores, promoting cell functionality and rapid (within minutes) 3D seeding in stiff scaffolds, which are otherwise impossible in the bulk gel counterparts.

    SERODIAGNOSTIC TESTING DEVICE AND SYSTEM FOR EARLY-STAGE LYME DISEASE USING A MULTIPLEXED IMMUNOASSAY

    公开(公告)号:US20210382052A1

    公开(公告)日:2021-12-09

    申请号:US17285906

    申请日:2019-10-18

    Abstract: A multiplexed vertical flow serodiagnostic testing device for diseases such as Lyme disease includes one or more multi-piece cassettes that include vertical stacks of functionalized porous layers therein. A bottom piece of the cassette includes a sensing membrane with a plurality of spatially multiplexed immunoreaction spots or locations. Top pieces are used to deliver sample and/or buffer solutions along with antibody-conjugated nanoparticles for binding with the immunoreaction spots or locations. A colorimetric signal is generated by the nanoparticles captured on the sensing membrane containing disease-specific antigens. The sensing membrane is imaged by a cost-effective portable reader device. The images captured by the reader device are subject to image processing and analysis to generate positive (+) or negative (−) indication for the sample. A concentration of one or more biomarkers may also be generated. The testing device is rapid, simple, inexpensive, and allows for simultaneous measurement of multiple antibodies and/or antigens making it an ideal point-of-care platform for disease diagnosis.

Patent Agency Ranking