Abstract:
Methods of fabricating semiconductor structures involve the formation of fins for finFET transistors having different stress/strain states. Fins of one stress/strain state may be employed to form n-type finFETS, while fins of another stress/strain state may be employed to form p-type finFETs. The fins having different stress/strain states may be fabricated from a common layer of semiconductor material. Semiconductor structures and devices are fabricated using such methods.
Abstract:
A method of assembling a multi-chip electronic device into a thin electronic package entails inverting a flip-chip die arrangement over a hollow substrate, stacking additional dies on the hollow substrate to form a multi-chip electronic device, and encapsulating the multi-chip electronic device. Containment of the encapsulant can be achieved by joining split substrate portions, or by reinforcing a hollow unitary substrate, using a removable adhesive film. Use of the removable adhesive film facilitates surrounding the multi-chip electronic device with the encapsulant. The adhesive film can also prevent encapsulant from creeping around the substrate to an underside of the substrate that supports solder ball pads for subsequent attachment to a ball grid array (BGA) or a land grid array (LGA).
Abstract:
The present disclosure is directed to a microfluidic die having a substrate with an inlet path that is configured to move fluid into the die. The die includes a plurality of heaters formed above the substrate, each heater having a first area, a plurality of chambers formed above the plurality of heaters, and a plurality of nozzles formed above the chambers. Each nozzle having an entrance adjacent to the chamber and an exit adjacent to en external environment, the entrance having a second area, and the second having a third area, the first area being greater than the second area, and the second area being greater than the third area. A ratio of the first area to the third area being greater than 5 to 1.
Abstract:
An integrated circuit includes a substrate with an interlevel dielectric layer positioned above the substrate. First trenches having a first depth are formed in the interlevel dielectric layer and a metal material fills the first trenches to form first interconnection lines. Second trenches having a second depth are also formed in the interlevel dielectric layer and filled with a metal material to form second interconnection lines. The first and second interconnection lines have a substantially equal pitch, which in a preferred implementation is a sub-lithographic pitch, and different resistivities due to the difference in trench depth. The first and second trenches are formed with an etching process through a hard mask having corresponding first and second openings of different depths. A sidewall image transfer process is used to define sub-lithographic structures for forming the first and second openings in the hard mask.
Abstract:
Gain offset and voltage offset compensation for a controllable gain element of a circuit is effected in response to a gain offset value and voltage offset value. A current operating condition of the circuit is sensed and compared to a nominal operating condition. If the current operating condition is outside the nominal operating condition by more than a threshold, a calibration operation to set the gain and voltage offset values is performed. The gain offset value is selected as a function of the sensed current operating condition. With respect to the voltage offset, differential input terminals of the controllable gain element are shunted and the output is measured. The measured output value of the controllable gain element is applied as the voltage offset value. The operating conditions at issue may be one or more of supply voltage and temperature.
Abstract:
Methods and structures for forming localized, differently-strained regions in a semiconductor layer on a substrate are described. An initial, unstrained, semiconductor-on-insulator substrate may be processed to form the differently-strained regions in the original semiconductor layer. The differently-strained regions may have opposite types of strain. The strains in the different regions may be formed independently.
Abstract:
A semiconductor device may include an integrated circuit (IC), and lead frame contact areas adjacent the IC. Each lead frame contact area may have an opening therein. The semiconductor device may include bond wires, each bond wire coupling a respective lead frame contact area with the IC. The semiconductor device may also include encapsulation material surrounding the IC, the lead frame contact areas, and the bond wires. Solder balls are within the respective opening.
Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
Abstract:
A system and method for encoding a stream of bits with a run-length limited high-rate reverse order encoding schema. According to one embodiment, an RLL encoding block includes a receiver having a precoder operable to receive a stream of N-bits having symbols of M-bits in length, a histogram operable to identify an index symbol of M-bits that does not occur within the received stream of N-bits. It is this index symbol that may be used as the key to encoding a block of symbols so as to ensure unique decodability when RLL decoding. Finally, an encoder operable to perform an exclusive-or operation on each symbol with the next symbol stored in the stream. Such an encoding system only adds one symbol of M bits in length to a block of N bits and still results in a stream of bits sufficient to support high-rate requirements and strict timing loop control.
Abstract:
Methods and structures for forming finFETs of different semiconductor composition and of different conductivity type on a same wafer are described. Some finFET structures may include strained channel regions. FinFETs of a first semiconductor composition may be grown in trenches formed in a second semiconductor composition. Material of the second semiconductor composition may be removed from around some of the fins at first regions of the wafer, and may remain around fins at second regions of the wafer. A chemical component from the second semiconductor composition may be driven into the fins by diffusion at the second regions to form finFETs of a different chemical composition from those of the first regions. The converted fins at the second regions may include strain.