Abstract:
In a wiring structure of a semiconductor device, dielectric tolerance of the wiring is improved by preventing diffusion of the wiring material. The wiring structure of the semiconductor device includes a first insulating film having plural grooves, plural wiring films formed protrusively above tops of the first insulating film among the grooves, plural barrier films formed on bottoms of the wiring films and up to a higher position than the tops on sides of the wiring films, first cap films comprising metal films formed on tops of the wiring films, and a second cap film formed on at least respective sides of the first cap films and the barrier films.
Abstract:
The present invention provides an infrared detection element having a single-crystalline base layer 3 with a thickness of 50 nm to 10 μm having a principal surface, a first electrode layer 4 formed on the principal surface of the single-crystalline base layer 3, a ferroelectric layer 5 which is formed on the first electrode layer 4 and is composed of a single-crystalline layer or a unidirectioally oriented layer. Distortion of the single-crystalline layer or a unidirectioally oriented layer in a surface parallel to the principal surface of the single-crystalline base layer 3 is elastically constrained by the single-crystalline base layer 3. The infrared detection element further has a second electrode layer 6 formed on the ferroelectric layer 5. An amount of charge is changed by changes in temperature caused by irradiation of infrared light to the ferroelectric layer 5. The amount of the charge is detected from the first and the second electrode layer4, 6. With the infrared detection element, an accurate temperature measurement is possible even in the neighborhood of the Curie temperature due to a discontinuous primary phase transition.
Abstract:
A method for forming an interconnection in a semiconductor element includes a process for forming a groove on an underlying substrate so as to correspond to the designed pattern of the interconnection. An underlayer is formed on the underlying substrate having the groove. A thin film of interconnection material is formed on the substrate and in the groove, and subjected to a polishing treatment.
Abstract:
According to the present invention, a semiconductor device is fabricated by: forming an insulation layer on a substrate; forming a groove in the surface of the insulation layer; forming a diffusion protection layer on the surface of the insulation layer including inside of the groove; forming a reaction layer on the diffusion protection layer; forming an oxide layer on the surface of the reaction layer; forming a layer of a wiring material on the oxide layer to embed the groove; forming a layer of a mixture of the reaction layer, the layer of the wiring material and the oxide layer by annealing; and removing the diffusion protection layer, the mixture layer and the layer of the wiring material from the surface of the insulation layer except for the diffusion protection layer, the mixture layer and the layer of the wiring material in the groove. By this fabrication method, the reaction of the wiring material such as copper and the underlying metal can be suppressed, thus suppressing the reduction in the cross-sectional size of the wiring material.
Abstract:
An SiO.sub.2 film and a first wiring layer are arranged in this order on a GaAs substrate. A capacitor is formed on the first wiring layer. The capacitor includes a lower electrode which has a multi-layer structure consisting of a Ti layer, an Mo layer, and a Pt layer in this order from underside. The capacitor also includes a dielectric film made of strontium titanate. The capacitor further includes an upper electrode which has a multi-layer structure consisting of a WN.sub.x layer (120 nm) and a W layer (300 nm) in this order from underside. That surface of the upper electrode, which is in contact with the dielectric film, is defined by the tungsten nitride layer.
Abstract:
A semiconductor memory device comprises a plurality of memory cells arranged in the form of a matrix to constitute rows-and columns, a plurality of first driving lines, connected to the memory cells, for transmitting a first driving signal to the memory cells, one of the plurality of first driving lines being selected by a row address, a plurality of second driving lines, connected to the memory cells, for transmitting a second driving signal to the memory cells, one of the plurality of second driving lines being selected by a column address, a plurality of read/write lines, connected to the memory cells, for performing read/write operations with respect to the memory cells, and a plurality of sense amplifiers connected to the read/ write lines, wherein one of the plurality of sense amplifiers is selected by the column address, and the memory cells in the same column are connected to the same sense amplifier through the read/write lines.
Abstract:
A ferroelectric capacitor includes a ferroelectric layer consisting of lead zirconate titanate formed on a silicon substrate, a plurality of rectangular trenches formed in the direction of thickness of the ferroelectric layer with a ferroelectric material therebetween, and first and second electrodes consisting of metal tungsten buried in the trenches to oppose each other with the ferroelectric material therebetween.
Abstract:
According to one embodiment, an acoustic semiconductor device includes an element unit, and a first terminal. The element unit includes an acoustic resonance unit. The acoustic resonance unit includes a semiconductor crystal. An acoustic standing wave is excitable in the acoustic resonance unit and is configured to be synchronously coupled with electric charge density within at least one portion of the semiconductor crystal via deformation-potential coupling effect. The first terminal is electrically connected to the element unit. At least one selected from outputting and inputting an electrical signal is implementable via the first terminal. The electrical signal is coupled with the electric charge density. The outputting the electrical signal is from the acoustic resonance unit, and the inputting the electrical signal is into the acoustic resonance unit.
Abstract:
A semiconductor package according to embodiments includes: a semiconductor chip including a front electrode on a front surface thereof and a back electrode on a back surface thereof; a front-side cap portion including an air gap in a portion between the semiconductor chip and the front-side cap portion and a front-side penetrating electrode, and is positioned to face the front surface of the semiconductor chip; a back-side cap portion bonded with a first cap portion to hermetically seal the semiconductor chip, includes an air gap at least in a portion between the semiconductor chip and the back-side cap portion and a back-side penetrating electrode, and is positioned to face the back surface of the semiconductor chip; a front-side connecting portion which electrically connects the front electrode and the front-side penetrating electrode; and a back-side connecting portion which electrically connects the back electrode and the back-side penetrating electrode.
Abstract:
According to an embodiment, a power amplifier is provided with at least one first growth ring gate structure and multiple second growth ring gate structures. The first growth ring gate structure is bounded by a semiconductor layer and performs a power amplification operation. The multiple second growth ring gate structures are bounded by the semiconductor layer and are arranged adjacently around the first growth ring gate structure in a surrounding manner. When the first growth ring gate structure performs a power amplification operation, the multiple second growth ring gate structures are depleted by applying a reverse bias to the multiple second growth ring gate structures whereby the depleted multiple second growth ring gate structures isolate the first growth ring gate structure from a surrounding portion.