Abstract:
Fin stacks including a silicon germanium alloy portion and a silicon portion are formed on a surface of a substrate. Sacrificial gate structures are then formed straddling each fin stack. Silicon germanium alloy portions that are exposed are oxidized, while silicon germanium alloy portions that are covered by the sacrificial gate structures are not oxidized. A dielectric material having a topmost surface that is coplanar with a topmost surface of each sacrificial gate structure is formed, and thereafter each sacrificial gate structure is removed. Non-oxidized silicon germanium alloy portions are removed suspending silicon portions that were present on each non-oxidized silicon germanium alloy portion. A functional gate structure is then formed around each suspended silicon portion. The oxidized silicon germanium alloy portions remain and provide stress to a channel portion of the suspended silicon portions.
Abstract:
A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
Abstract:
In one aspect, a method of forming a wiring layer on a wafer is provided which includes: depositing a HSQ layer onto the wafer; cross-linking a first portion(s) of the HSQ layer using e-beam lithography; depositing a hardmask material onto the HSQ layer; patterning the hardmask using optical lithography, wherein the patterned hardmask covers a second portion(s) of the HSQ layer; patterning the HSQ layer using the patterned hardmask in a manner such that i) the first portion(s) of the HSQ layer remain and ii) the second portion(s) of the HSQ layer covered by the patterned hardmask remain, wherein by way of the patterning step trenches are formed in the HSQ layer; and filling the trenches with a conductive material to form the wiring layer on the wafer.
Abstract:
A silicon germanium on insulator (SGOI) wafer having nFET and pFET regions is accessed, the SGOI wafer having a silicon germanium (SiGe) layer having a first germanium (Ge) concentration, and a first oxide layer over nFET and pFET and removing the first oxide layer over the pFET. Then, increasing the first Ge concentration in the SiGe layer in the pFET to a second Ge concentration and removing the first oxide layer over the nFET. Then, recessing the SiGe layer of the first Ge concentration in the nFET so that the SiGe layer is in plane with the SiGe layer in the pFET of the second Ge concentration. Then, growing a silicon (Si) layer over the SGOI in the nFET and a SiGe layer of a third concentration in the pFET, where the SiGe layer of a third concentration is in plane with the grown nFET Si layer.
Abstract:
A semiconductor device includes a first source/drain region a second source/drain region, and a gate region interposed between the first and second source/drain regions. At least one nanowire has a first end anchored to the first source/drain region and an opposing second end anchored to the second source/drain region such that the nanowire is suspended above the wafer in the gate region. At least one gate electrode is in the gate region. The gate electrode contacts an entire surface of the nanowire to define a gate-all-around configuration. At least one pair of oxidized spacers surrounds the at least one gate electrode to electrically isolate the at least one gate electrode from the first and second source/drain regions.
Abstract:
A semiconductor device includes a wafer having a bulk layer and a III-V buffer layer on an upper surface of the bulk layer. The semiconductor device further includes at least one semiconductor fin on the III-V buffer layer. The semiconductor fin includes a III-V channel portion. Either the wafer or the semiconductor fin includes an oxidized III-V portion interposed between the III-V channel portion and the III-V buffer layer to prevent current leakage to the bulk layer.
Abstract:
In one aspect, a method of fabricating a bipolar transistor device on a wafer includes the following steps. A dummy gate is formed on the wafer, wherein the dummy gate is present over a portion of the wafer that serves as a base of the bipolar transistor. The wafer is doped to form emitter and collector regions on both sides of the dummy gate. A dielectric filler layer is deposited onto the wafer surrounding the dummy gate. The dummy gate is removed selective to the dielectric filler layer, thereby exposing the base. The base is recessed. The base is re-grown from an epitaxial material selected from the group consisting of: SiGe, Ge, and a III-V material. Contacts are formed to the base. Techniques for co-fabricating a bipolar transistor and CMOS FET devices are also provided.
Abstract:
A device that includes: a substrate layer; a first set of source/drain component(s) defining an nFET (n-type field-effect transistor) region; a second set of source/drain component(s) defining a pFET (p-type field-effect transistor) region; a first suspended nanowire, at least partially suspended over the substrate layer in the nFET region and made from III-V material; and a second suspended nanowire, at least partially suspended over the substrate layer in the pFET region and made from Germanium-containing material. In some embodiments, the first suspended nanowire and the second suspended nanowire are fabricated by adding appropriate nanowire layers on top of a Germanium-containing release layer, and then removing the Germanium-containing release layers so that the nanowires are suspended.
Abstract:
In one aspect, a method of forming a multiple VT device structure includes the steps of: forming an alternating series of channel and barrier layers as a stack having at least one first channel layer, at least one first barrier layer, and at least one second channel layer; defining at least one first and at least one second active area in the stack; selectively removing the at least one first channel/barrier layers from the at least one second active area, such that the at least one first channel layer and the at least one second channel layer are the top-most layers in the stack in the at least one first and the at least one second active areas, respectively, wherein the at least one first barrier layer is configured to confine charge carriers to the at least one first channel layer in the first active area.
Abstract:
A semiconductor structure includes a plurality of semiconductor fins located on a semiconductor substrate, in which each of the semiconductor fins comprises a sequential stack of a buffered layer including a III-V semiconductor material and a channel layer including a III-V semiconductor material. The semiconductor structure further includes a gap filler material surrounding the semiconductor fins and including a plurality of trenches therein. The released portions of the channel layers of the semiconductor fins located in the trenches constitute nanowire channels of the semiconductor structure, and opposing end portions of the channel layers of the semiconductor fins located outside of the trenches constitute a source region and a drain region of the semiconductor structure, respectively. In addition, the semiconductor structure further includes a plurality of gates structures located within the trenches that surround the nanowire channels in a gate all around configuration.