摘要:
The present invention relates to a compressor in which a rotary member suspended on a stationary member is rotated to compress the refrigerant. As the rotary member is suspended on a first stationary member and rotatably supported on a second stationary member spaced apart from the first stationary member, components can be easily centered and assembled with the structural stability. In addition, the oil stored in a hermetic container is supplied to a lubrication passage provided between the rotary member and the stationary member. This reduces a friction loss between the components and achieves the operation reliability. Moreover, the oil is easily introduced into a vane mounting hole in which a vane is linearly reciprocated. This reduces the friction and abrasion of the vane and improves the operation reliability.
摘要:
The present invention relates to a compressor in which a rotary member suspended on a stationary member is rotated to compress the refrigerant. The rotary member is suspended on a first stationary member and rotatably supported on a second stationary member spaced apart from the first stationary member to thereby achieve the structural stability, improve the operation reliability and reduce the vibration. The components can be easily centered and assembled with an excellent assembly property. In addition, a mounting structure of an elastically-supported vane is improved to ensure the lubrication performance and the operation reliability. Moreover, a mounting structure of a roller-incorporated vane is improved to reduce vibration and prevent refrigerant leakage, which leads to high compression efficiency.
摘要:
Provided are a high reliability stack module fabricated at low cost by using simplified processes, a card using the stack module, and a system using the stack module. In the stack module, unit substrates are stacked with respect to each other and each unit substrate includes a selection terminal. First selection lines are electrically connected to selection terminals of first unit substrates disposed in odd-number layers, pass through some of the unit substrates, and extend to a lowermost substrate of the unit substrates. Second selection lines are electrically connected to selection terminals of second unit substrates disposed in even-number layers, pass through some of the unit substrates, and extend to the lowermost substrate of the unit substrates. The selection terminal is disposed between the first selection lines and the second selection lines.
摘要:
Methods of forming an integrated circuit device include forming an interlayer dielectric layer on a first surface of a semiconductor substrate and then forming an interconnect hole that extends through the interlayer dielectric layer and into the semiconductor substrate. A first sidewall spacer layer is formed on a sidewall of the interconnect hole. The semiconductor substrate at a bottom of the interconnect hole is isotropically etched to define an undercut recess in the semiconductor substrate. This etching step is performed using the first sidewall spacer layer as an etching mask. The interconnect hole and the uncut recess are then filled with a through-via electrode. A second surface of the semiconductor substrate is removed for a sufficient duration to expose the uncut recess containing the through-via electrode.
摘要:
Provided is a capacity modulation compressor, comprising: a shell forming a sealed interior space; a compression mechanism, which is positioned inside the shell and modulates a capacity for compressing a working fluid; and an electromotive driving unit, which is positioned inside the shell, includes a stator and a rotor, and drives the compression mechanism; and a shaft for transferring a torque of the electromotive unit to the compression mechanism, the rotor including a rotor core, conductive bars, flux barriers, and permanent magnets, starting running by an induction torque produced due to the presence of the conductive bars, and operating at a synchronous speed by a reluctance torque produced due to the presence of the flux barriers and a magnetic torque produced to the permanent magnets, and the compressing capacity for the compression mechanism to compress the working fluid being set lower than a maximum compression capacity.
摘要:
An image sensor device including a protective plate may be manufactured from an image sensor chip having an active surface and a back surface opposite to the active surface. The image sensor chip may include chip pads formed in a peripheral region of the active surface, a microlens formed in a central region of the active surface and an intermediate region between the peripheral and central regions. A protective plate may be attached to the intermediate region of the active surface of the image sensor chip using an adhesive pattern that is sized and configured to maintain a separation distance between the protective plate and the microlens formed on the image sensor chip. Conductive plugs, formed before, during or after the manufacture of the image sensor chip circuitry may provide electrical connection between the chip pads and external connectors.
摘要:
A chip stack package is manufactured at a wafer level by forming connection vias in the scribe lanes adjacent the chips and connecting the device chip pads to the connection vias using rerouting lines. A lower chip is then attached and connected to a substrate, which may be a test wafer, and an upper chip is attached and connected to the lower chip, the electrical connections being achieved through their respective connection vias. In addition to the connection vias, the chip stack package may include connection bumps formed between vertically adjacent chips and/or the lower chip and the substrate. The preferred substrate is a test wafer that allows the attached chips to be tested, and replaced if faulty, thereby ensuring that each layer of stacked chips includes only “known-good die” before the next layer of chips is attached thereby increasing the production rate and improving the yield.
摘要:
In a stacked chip configuration, and manufacturing methods thereof, the gap between a lower and an upper chip is filled completely using a relatively simple process that eliminates voids between the lower and upper chips and the cracking and delamination problems associated with such voids. The present invention is applicable to both chip-level bonding and wafer-level bonding approaches. A photosensitive polymer layer is applied to a first chip, or wafer, prior to stacking the chips or stacking the wafers. The photosensitive polymer layer is partially cured, so that the photosensitive polymer layer is made to be structurally stable, while retaining its adhesive properties. The second chip, or wafer, is stacked, aligned, and bonded to the first chip, or wafer, and the photosensitive polymer layer is then cured to fully bond the first and second chips, or wafers. In this manner, adhesion between chips/wafers is greatly improved, while providing complete gap fill. In addition, mechanical reliability is improved, alleviating the problems associated with cracking and delamination, and leading to an improvement in device yield and device reliability.
摘要:
In a stacked chip configuration, and manufacturing methods thereof, the gap between a lower chip and an upper chip is filled completely using a relatively simple process that eliminates voids between the lower and upper chips and the cracking and delamination problems associated with voids. The present invention is applicable to both chip-level bonding and wafer-level bonding approaches. A photosensitive polymer layer is applied to a first chip, or wafer, prior to stacking the chips or stacking the wafers. The photosensitive polymer layer is partially cured, so that the photosensitive polymer layer is made to be structurally stable, while retaining its adhesive properties. The second chip, or wafer, is stacked, aligned, and bonded to the first chip, or wafer, and the photosensitive polymer layer is then cured to fully bond the first and second chips, or wafers. In this manner, adhesion between chips/wafers is greatly improved, while providing complete fill of the gap. In addition, mechanical reliability is improved and CTE mismatch is reduced, alleviating the problems associated with warping, cracking and delamination, and leading to an improvement in device yield and device reliability.
摘要:
An image sensor device and methods thereof. In an example method, a protective layer may be formed over at least one microlens. An adhesive layer may be formed over the protective layer. The adhesive layer may be removed so as to expose the protective layer. The protective layer may be removed so as to expose the at least one microlens, the exposed at least one microlens not including residue from the adhesive layer. The at least one microlens may have an improved functionality due at least in part to the lack of residue from the adhesive layer. In an example, the at least one microlens may be included in an image sensor module.