Abstract:
The present disclosure provides a method for fabricating a semiconductor structure. The method comprises providing a substrate and a patterned layer formed on the substrate, one or more overlay marks being formed on the patterned layer; performing a pre-film-formation overlay inspection using a bright field (BF) inspection tool to receive a pre-film-formation data on the one or more overlay marks on the patterned layer; forming one or more layers on the patterned layer; performing a post-film-formation overlay inspection using a dark field (DF) inspection tool to receive a post-film-formation data on the one or more overlay marks underlying the one or more layers; and determining whether the pre-film-formation data matches the post-film-formation data.
Abstract:
A semiconductor device, a package structure, and methods of forming the same are disclosed. An embodiment is a semiconductor device comprising a first optical device over a first substrate, a vertical waveguide on a top surface of the first optical device, and a second substrate over the vertical waveguide. The semiconductor device further comprises a lens capping layer on a top surface of the second substrate, wherein the lens capping layer is aligned with the vertical waveguide, and a second optical device over the lens capping layer.
Abstract:
An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a low-k (LK) dielectric layer over a substrate; a first conductive feature and a second conductive feature in the LK dielectric layer; a first spacer along a first sidewall of the first conductive feature; a second spacer along a second sidewall of the second conductive feature, wherein the second sidewall of the second conductive feature faces the first sidewall of the first conductive feature; an air gap between the first spacer and the second spacer; and a third conductive feature over the first conductive feature, wherein the third conductive feature is connected to the first conductive feature.
Abstract:
A method embodiment for patterning a semiconductor device includes patterning a dummy layer over a hard mask to form one or more dummy lines. A sidewall aligned spacer is conformably formed over the one or more dummy lines and the hard mask. A first reverse material layer is formed over the sidewall aligned spacer. A first photoresist is formed and patterned over the first reverse material layer. The first reverse material layer using the first photoresist as a mask, wherein the sidewall aligned spacer is not etched. The one or more dummy lines are removed, and the hard mask is patterned using the sidewall aligned spacer and the first reverse material layer as a mask. A material used for forming the sidewall aligned spacer has a higher selectivity than a material used for forming the first reverse material layer.
Abstract:
A semiconductor integrated circuit (IC) with a dielectric matrix is disclosed. The dielectric matrix is located between two conductive features. The matrix includes a first nano-scale dielectric block, a second nano-scale dielectric block, and a first nano-air-gap formed by a space between the first nano-scale dielectric block and the second nano-scale dielectric block. The matrix also includes third nano-scale dielectric block and a second nano-air-gap formed by a space between the second nano-scale dielectric block and the third nano-scale dielectric block. The nano-scale dielectric blocks share a first common width, and the nano-air-gaps share a second common width. An interconnect structure integrates the dielectric matrix with the conductive features.
Abstract:
A method of forming a semiconductor structure includes providing a substrate; forming a low-k dielectric layer over the substrate; embedding a conductive wiring into the low-k dielectric layer; and thermal soaking the conductive wiring in a carbon-containing silane-based chemical to form a barrier layer on the conductive wiring. A lining barrier layer is formed in the opening for embedding the conductive wiring. The lining barrier layer may comprise same materials as the barrier layer, and the lining barrier layer may be recessed before forming the barrier layer and may contain a metal that can be silicided.
Abstract:
A system and method for manufacturing semiconductor devices is provided. An embodiment comprises using an etchant to remove a portion of a substrate to form an opening with a 45° angle with a major surface of the substrate. The etchant comprises a base, a surfactant, and an oxidant. The oxidant may be hydrogen peroxide.
Abstract:
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes receiving a precursor. A decomposable polymer layer (DPL) is deposited between the conductive features of the precursor. The DPL is annealed to form an ordered periodic pattern of different types of polymer nanostructures. One type of polymer nanostructure is decomposed by a first selectively to form a trench. The trench is filled by a dielectric layer to form a dielectric block. The remaining types of polymer nanostructures are decomposed by a second selectively etching to form nano-air-gaps.
Abstract:
A semiconductor device includes a substrate, a first conductive feature disposed in a top portion of the substrate, an etch stop layer formed of a metal oxide composite and disposed on a top surface of the substrate, and a second conductive feature disposed on and through the etch stop layer and in contact with the first conductive feature. The metal oxide composite contains a metal element represented by M, and a top surface of the etch stop layer includes an M—O—X group, O representing oxygen, and X representing an element other than hydrogen.
Abstract:
Some embodiments relate to an integrated chip include a conductive structure disposed within a dielectric structure. A first dielectric layer overlies the dielectric structure. A dielectric capping layer on the conductive structure. Opposing sidewalls of the dielectric capping layer are aligned with opposing sidewalls of the conductive structure. A second dielectric layer overlies the first dielectric layer and the dielectric capping layer, wherein the second dielectric layer directly contacts the opposing sidewalls of the dielectric capping layer, the opposing sidewalls of the conductive structure, and a top surface of the first dielectric layer.