Abstract:
A process/apparatus is disclosed for continuously separating a liquid medium comprising diluent and unreacted monomers from a polymerization effluent comprising diluent, unreacted monomers and polymer solids, comprising a continuous discharge of the polymerization effluent from a slurry reactor through a discharge valve and transfer conduit into a first intermediate pressure flash tank with a conical bottom defined by substantially straight sides inclined at an angle to that of horizontal equal to or greater than the angle of slide of the slurry/polymer solids and an exit seal chamber of such diameter (d) and length (l) as to maintain a desired volume of concentrated polymer solids/slurry in the exit seal chamber such as to form a pressure seal while continuously discharging a plug flow of concentrated polymer solids/slurry bottom product of the first flash tank from the exit seal chamber through a seal chamber exit reducer with inclined sides defined by substantially straight sides inclined at an angle to that of horizontal equal to or greater than the angle of slide of the polymer solids which remain after removal of about 50 to 100% of the inert diluent therefrom to a second flash tank at a lower pressure.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
A reactor comprising a reacting vessel 31 that contains a fluid including high temperature and high pressure water under target reaction temperature and reaction pressure condition and performs a reaction treatment to a reactant by the fluid, a first pipe 25 connected to the reacting vessel 31 to supply the reactant to the reacting vessel 31, and a first partition means 50 for partitioning between first pipe 25 and the reacting vessel 31 so as to prevent a leakage of any one of the fluid, the reactant, and a reaction product from the reacting vessel 31 side to the first pipe 25 side. The first partition means 50 is comprised of for example a valve 51, a shaft 52, a weight 53, a supporting member 54, and a pipe 55, and normally, due to the weight 53, the valve 51 closes an opening of a bottom end of the pipe 55. That is, it isolates the pipe 55 and the inside of the reacting vessel 31. At this time, although the valve 51 does not completely seal up the inside of the reacting vessel 31, it has the ability to prevent a large amount of hot water HW in the reacting vessel 31 from leaking into the pipe 25 due to a convection current thereof.
Abstract:
A process/apparatus is disclosed for continuously separating a liquid medium comprising diluent and unreacted monomers from a polymerization effluent comprising diluent, unreacted monomers and polymer solids, comprising a continuous discharge of the polymerization effluent from a slurry reactor through a discharge valve and transfer conduit into a first intermediate pressure flash tank with a conical bottom defined by substantially straight sides inclined at an angle to that of horizontal equal to or greater than the angle of slide of the slurry/polymer solids and an exit seal chamber of such diameter (d) and length (l) as to maintain a desired volume of concentrated polymer solids/slurry in the exit seal chamber such as to form a pressure seal while continuously discharging a plug flow of concentrated polymer solids/slurry bottom product of said first flash tank from the exit seal chamber through a seal chamber exit reducer with inclined sides defined by substantially straight sides inclined at an angle to that of horizontal equal to or greater than the angle of slide of the polymer solids which remain after removal of about 50 to 100% of the inert diluent therefrom to a second flash tank at a lower pressure.
Abstract:
The invention concerns a method and a device for process control of reaction processes using Fourier transform infrared spectroscopy. In accordance with the invention, an interferogram is generated before or after interaction with the compositions. Subsequent thereto, the interferogram is inspected in segments for externally introduced intensity fluctuations. The intensity fluctuations are subjected to an analysis procedure involving integration, differentiation, or the like, and on the basis of this evaluation, a decision is made as to whether or not the interferogram has an acceptable degree of interfering signals. The interferogram is labeled with this evaluation result and the procedure is repeated a plurality of times. After a sufficient number of acceptable interferograms have been collected, the acceptable interferograms are summed and subjected to a Fourier transform process to extract the frequency dependence. In this manner, Fourier transformation infrared spectroscopy techniques can be applied for process control of processes which would otherwise be impossible due to unacceptably large degrees of interference caused primarily by bubble formation.
Abstract:
An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
Abstract:
A hydrogen producing apparatus comprising: a reforming section having a reforming catalyst which causes a reaction between a carbon-containing organic compound as a feedstock and water; a feedstock supply section for supplying the feedstock to the reforming section; a water supply section for supplying water to the reforming section; a heating section for heating the reforming catalyst; a shifting section having a shift catalyst which causes a shift reaction between carbon monoxide and water contained in a reformed gas supplied from the reforming section; and a purifying section having a purifying catalyst which causes oxidation or methanation of carbon monoxide contained in a gas supplied from the shifting section, wherein the shift catalyst comprises a platinum group metal and a metal oxide.
Abstract:
A reformer comprises first and second reforming catalyst layers arranged in a reforming chamber, and a supply mechanism for supplying reformable fuel gas, steam, and oxygen to the reforming chamber to simultaneously perform an oxidation reaction and a reforming reaction in the first and second reforming catalyst layers. Each of the first and second reforming catalyst layers is designed to have a hollow plate-shaped configuration with its surface direction perpendicular to a gas flow direction in the reforming chamber. Accordingly, a compact fuel-reforming apparatus having a good thermal efficiency is obtained, in which the start-up operation is smoothly effected.
Abstract:
In a hydrogen generator comprising a reforming unit having a material supply unit and a water supply unit, and a burner for heating the reforming unit, having a fuel supply unit and an air supply unit, a control unit is arranged for controlling the amount of air to be supplied from the air supply unit to the burner, based on the temperature of the reforming unit and the amount of a raw material supplied to the reforming unit, in order to make the combustion state of the burner stable so as to improves the operation and convenience thereof.
Abstract:
A system and method for controlling a microwave heated chemical process is disclosed. Time varying concentrations of some chemical substances within fumes in the microwave oven are monitored to detect concentration variations for which responses are known. Responses to the detected variations are initiated to control the chemical process without terminating the process. Examples of responses include varying microwave radiation energy, initiating safety systems, increased venting of the microwave oven, and so forth.