Abstract:
A film deposition method, in which a film of a reaction product of a first reaction gas, which tends to be adsorbed onto hydroxyl radicals, and a second reaction gas capable of reacting with the first reaction gas is formed on a substrate provided with a concave portion, includes a step of controlling an adsorption distribution of the hydroxyl radicals in a depth direction in the concave portion of the substrate; a step of supplying the first reaction gas on the substrate onto which the hydroxyl radicals are adsorbed; and a step of supplying the second reaction gas on the substrate onto which the first reaction gas is adsorbed.
Abstract:
Embodiments relate to an atomic layer deposition (ALD) process that uses a seed precursor for increased deposition rate. A first reactant precursor (e.g., H2O) may be formed as a result of reaction. The first reactant precursor may react with or substitute source precursor (e.g., 3DMAS) in a subsequent process to deposit material on a substrate. In addition, a second reactant precursor (e.g., radicals) may be separately injected onto the substrate previously injected with the source precursor. By causing the source precursor to react with the first reactant precursor from the surface of the substrate and also react with the second reactant provided by the injector, the material is deposited on the substrate in an expedient manner.
Abstract:
A substrate processing apparatus includes: a processing gas supply pipe configured to supply a processing gas into a processing chamber; a substrate mounting table that is installed in the processing chamber and on which a substrate to be processed is mounted; a driving unit configured to drive the substrate mounting table to move the substrate mounted on the substrate mounting table; a first plasma generating unit configured to generate plasma of the processing gas supplied into the processing chamber with a first density; and a second plasma generating unit that is installed adjacent to the first plasma generating unit in a traveling direction of the substrate and configured to generate plasma of the processing gas supplied into the processing chamber with a second density lower than the first density.
Abstract:
A stacked substrate is produced using an apparatus including an injector head device. Production includes the steps of providing an injector head device comprising a gas bearing pressure arrangement and injecting bearing gas against opposite substrate surfaces, to balance the substrate without support in a conveying plane in the injector head device. The following steps are performed iteratively: contacting opposite substrate surfaces with a first precursor gas; and with a second precursor gas, first and second precursor gases supplied in first and second deposition spaces are arranged opposite and facing respective sides of the substrate; establishing relative motion between the deposition space and the substrate in the conveying plane; and providing at least one of a reactant gas, plasma, laser-generated radiation, and/or ultraviolet radiation, in any or both reactant spaces for reacting any of the first and second precursor gas after deposition on at least part of the substrate surface.
Abstract:
A rolled film formation apparatus including a first chamber in which a first precursor is applied to a substrate, a second chamber in which a second precursor is applied to the substrate such that the first and second precursors react with each other and that an atomic layer is deposited on the substrate, a third chamber in which a purge gas is applied to the substrate, and conveyance roller pairs which are positioned in the first, second and third chambers, and convey the substrate. Each conveyance roller pair includes a first roller and a second roller which sandwich the substrate in a thickness direction of the substrate. At least one of the first and second rollers has an outer peripheral surface having a surface unevenness. The substrate is moved back and forth among the first, second and third chambers. The atomic layer is deposited more than once on the substrate.
Abstract:
A film deposition method includes rotating a rotary table by a first angle while supplying a separation gas from a separation gas supplying part and a first reaction gas from a first gas supplying part; supplying a second reaction gas from a second gas supplying part and rotating the rotary table by a second angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; rotating the rotary table by a third angle while supplying the separation gas from the separation gas supplying part and the first reaction gas from the first gas supplying part; and supplying a third reaction gas from the second gas supplying part and rotating the rotary table by a fourth angle while supplying the separation gas and the first reaction gas.
Abstract:
Provided is a semiconductor device manufacturing method which has: a step wherein a processing substrate to be processed is placed on a substrate mounting member that is provided in a processing chamber having a plurality of gas supply regions; a film-forming step wherein a processing gas is supplied to the processing chamber, and the substrate is processed; a step wherein the substrate is carried out from the processing chamber; and a cleaning step wherein the density of the cleaning gas is controlled, while controlling cleaning gas quantities in the gas supply regions, respectively, in a state wherein the substrate is not placed in the processing chamber.
Abstract:
Apparatus for atomic layer deposition on a surface of a sheeted substrate, comprising: an injector head comprising a deposition space provided with a precursor supply and a precursor drain; said supply and drain arranged for providing a precursor gas flow from the precursor supply via the deposition space to the precursor drain; the deposition space in use being bounded by the injector head and the substrate surface; a gas bearing comprising a bearing gas injector, arranged for injecting a bearing gas between the injector head and the substrate surface, the bearing gas thus forming a gas-bearing; a conveying system providing relative movement of the substrate and the injector head along a plane of the substrate to form a conveying plane along which the substrate is conveyed. A support part arranged opposite the injector head, the support part constructed to provide a gas bearing pressure arrangement that balances the injector head gas-bearing in the conveying plane, so that the substrate is held supportless by said gas bearing pressure arrangement in between the injector head and the support part.
Abstract:
A method of depositing a film is provided. In the method, one operation of a unit of film deposition process is performed by carrying a substrate into a processing chamber, by depositing a nitride film on the substrate, and by carrying the substrate out of the processing chamber after finishing depositing the nitride film on the substrate. The one operation is repeated a predetermined plurality of number of times continuously to deposit the nitride film on a plurality of substrates continuously. After that, an inside of the processing chamber is oxidized by supplying an oxidation gas into the processing chamber.
Abstract:
A vapor deposition apparatus for providing a deposition film on a substrate, the vapor deposition apparatus includes a plurality of first nozzle parts which injects a first raw material toward the substrate; a plurality of second nozzle parts which is alternately disposed together with the plurality of first nozzle parts and injects a second raw material toward the substrate; a diffuser unit which distributes the second raw material to the plurality of second nozzle parts; and a supply unit which supplies the second raw material to the diffuser unit.