Abstract:
A semiconductor device includes a substrate supporting a plurality of layers that include at least one modulation doped quantum well (QW) structure offset from a quantum dot in quantum well (QD-in-QW) structure. The modulation doped QW structure includes a charge sheet spaced from at least one QW by a spacer layer. The QD-in-QW structure has QDs embedded in one or more QWs. The QD-in-QW structure can include at least one template/emission substructure pair separated by a barrier layer, the template substructure having smaller size QDs than the emission substructure. A plurality of QD-in-QW structures can be provided to support the processing (emission, absorption, amplification) of electromagnetic radiation of different characteristic wavelengths (such as optical wavelengths in range from 1300 nm to 1550 nm). The device can realize an integrated circuit including a wide variety of devices that process electromagnetic radiation at a characteristic wavelength(s) supported by the QDs of the QD-in-QW structure(s). Other semiconductor devices are also described and claimed.
Abstract:
A photovoltaic (PV) device having a quantum dot sensitized interface includes a first conductor layer and a second conductor layer. At least one of the conductor layers is transparent to solar radiation. A quantum dot (nanoparticle) sensitized photo-harvesting interface comprises a photo-absorber layer, a quantum dot layer and a buffer layer, placed between the two conductors. The absorber layer is a p-type material and the buffer layer is an n-type material. The quantum dot layer has a tunable bandgap to cover infrared (IR), visible light and ultraviolet (UV) bands of solar spectrum.
Abstract:
A semiconductor device is provided that includes an array of imaging cells realized from a plurality of layers formed on a substrate, wherein the plurality of layers includes at least one modulation doped quantum well structure spaced from at least one quantum dot structure. Each respective imaging cell includes an imaging region spaced from a corresponding charge storage region. The at least one quantum dot structure of the imaging region generates photocurrent arising from absorption of incident electromagnetic radiation. The at least one modulation doped quantum well structure defines a buried channel for lateral transfer of the photocurrent for charge accumulation in the charge storage region and output therefrom. The at least one modulation doped quantum well structure and the at least one quantum dot structure of each imaging cell can be disposed within a resonant cavity that receives the incident electromagnetic radiation or below a structured metal film having a periodic array of holes.
Abstract:
A quantum dot infrared photodetector (QDIP) that can enhance the photocurrent to a greater level than the dark current and/or can be operated at high temperatures is disclosed. The quantum dot infrared photodetector comprises at least one quantum well stack and a plurality of quantum dot layers. The quantum well stack is disposed between the pluralities of quantum dot layers. The quantum well stack comprises two spacer layers and a carrier supplying layer. The carrier supplying layer is disposed between the spacer layers. When the quantum dot infrared photodetector is applied with two bias voltages respectively, the carrier supplying layer supplies carriers to the to quantum dot layers.
Abstract:
The present invention relates to colloidal quantum dots, to a process for producing such colloidal quantum dots, to the use thereof and to optoelectronic components comprising colloidal quantum dots.
Abstract:
An electronic device is described. The electronic device includes a circuit chip. The electronic device also includes a coating covering at least a portion of the circuit chip. The coating further includes a nanomaterial, to protect the circuit chip from at least one of identifying the chip structure, reading memory locations, or modifying memory locations.
Abstract:
Methods and devices are provided for forming multi-nary semiconductor. In one embodiment, a method is provided comprising of depositing a precursor material onto a substrate, wherein the precursor material may include or may be used with an additive to minimize concentration of group IIIA material such as Ga in the back portion of the final semiconductor layer. The additive may be a non-copper Group IB additive in elemental or alloy form. Some embodiments may use both selenium and sulfur, forming a senary or higher semiconductor alloy. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A metal-chalcogenide photovoltaic device includes a first electrode, a window layer spaced apart from the first electrode, and a photon-absorption layer between the first electrode and the window layer. The photon-absorption layer includes a metal-chalcogenide semiconductor. The window layer includes a layer of metal-oxide nanoparticles, and at least a portion of the window layer provides a second electrode that is substantially transparent to light within a range of operating wavelengths of the metal-chalcogenide photovoltaic device. A method of producing a metal-chalcogenide photovoltaic device includes providing a photovoltaic substructure, providing a solution of metal-oxide nanoparticles, and forming a window layer on the substructure using the solution of metal-oxide nanoparticles such that the window layer includes a layer of metal-oxide nanoparticles formed by a solution process.
Abstract:
An intermediate band solar cell is provided. The intermediate band material of the intermediate band solar cell consists of a collection of quantum dots of a semiconductor material that are immersed in a volume of a second semiconductor material. The first semiconductor material has a rock salt-type crystalline structure, and the second semiconductor material has a zinc blende structure. The quantum dots are produced by the immiscibility of the first semiconductor material in the second semiconductor material. A combination of the first and second semiconductor materials with a very similar lattice constant can therefore be selected such that the layer of intermediate band material does not have mechanical stress accumulation.
Abstract:
A device includes an image sensor chip having formed therein an elevated photodiode, and a device chip underlying and bonded to the image sensor chip. The device chip has a read out circuit electrically connected to the elevated photodiode.