Abstract:
Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber.
Abstract:
In one embodiment, an optical system for amplifying space-multiplexed optical signals includes an input fiber that propagates multiple spatially-separated optical signals and a bulk amplifier formed of a doped material that receives the multiple spatially-separated optical signals and simultaneously amplifies those signals to generate multiple amplified signals.
Abstract:
There is provided a photonic bandgap fiber used in a state in which at least a part of the photonic bandgap fiber is bent at radii of 15 cm or greater and 25 cm or less. A large number of high refractive index portions 57 are disposed in a nineteen-cell core type in three layers, and a V value is 1.5 or greater and 1.63 or less. In the high refractive index portions 57, conditions are defined that a relative refractive index difference is Δ% and a lattice constant is Λ μm so as to remove light in a higher mode at the bent portion as described above.
Abstract:
An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a “flat-top” signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.
Abstract:
A laser gain element including an undoped layer of a monoclinic double tungstate (MDT) crystal, and a method of forming a laser gain element are provided. The laser gain element includes a layer of doped MDT crystal adjacent to the undoped layer, the doped MDT layer including a pre-selected concentration of rare earth ions. The layer of doped MDT crystal has an absorption peak at a first wavelength and an emission peak at a second wavelength longer than the first wavelength; and the layer of doped MDT crystal has a fluorescence emission with a weighted average at a third wavelength shorter than the first wavelength. A laser resonator cavity formed with a plurality of composite gain elements as above is also provided.
Abstract:
The present invention relates to compact, low noise, ultra-short pulse sources based on fiber amplifiers, and various applications thereof. At least one implementation includes an optical amplification system having a fiber laser seed source producing seed pulses at a repetition rate corresponding to the fiber laser cavity round trip time. A nonlinear pulse transformer, comprising a fiber length greater than about 10 m, receives a seed pulse at its input and produces a spectrally broadened output pulse at its output, the output pulse having a spectral bandwidth which is more than 1.5 times a spectral bandwidth of a seed pulse. A fiber power amplifier receives and amplifies spectrally broadened output pulses. A pulse compressor is configured to temporally compress spectrally broadened pulses amplified by said power amplifier. Applications include micro-machining, ophthalmology, molecular desorption or ionization, mass-spectroscopy, and/or laser-based, biological tissue processing.
Abstract:
A method of controlling output pulses of a pulse laser device (100) including thin-disk laser medium (10), in particular controlling a carrier-envelope phase and/or an intensity noise of the output pulses, includes pumping thin-disk laser medium (10) of pulse laser device (100) with multiple pump laser diodes (21, 22, 23), having at least one modulated laser diode (21, 22) powered by current source (31, 32) with modulation capability, and controlling the output pulses by modulating the output power of the at least one modulated laser diode (21, 22), which is modulated by controlling a drive current thereof, wherein the pump laser diodes further include at least one stable laser diode (23), having constant output power, and the output power of the at least one modulated laser diode (21, 22) is smaller than the whole output power of the stable laser diode(s) (23). A pulse laser device (100) is also described.
Abstract:
Apparatus and methods for forming fine scale structures (4, 4′, 4″, 5, 6, 7, 8) in the surface of a dielectric substrate (3) to two or more depths are disclosed. In an example, the apparatus 25 comprises a first solid state laser (12) arranged to provide a first pulsed laser beam (13), a first mask (16) having a pattern for defining a first set of structures (4, 6, 7, 8) at a first depth, a projection lens (17) for forming a reduced size image of said pattern on the surface (3) of the substrate and a beam scanner arranged to scan said first pulsed laser beam (13) in a two-dimensional raster scan relative to the first pattern to form a first set of structures (4, 6, 7, 5) at a first depth in the substrate, wherein the first or a further solid state laser is arranged to form a second set of structures (8) at a second depth in the substrate (3).
Abstract:
A laser pumping method pumps a primary amount of energy into the near red satellite band of a metal vapor and noble gas mixture laser medium and a lesser amount of energy is pumped into a highly excited level to stimulate laser output. The medium is can be a Rb vapor and Xe gas mixture. The lesser amount of energy is pumped into the laser medium to populate an excited level that lies above the upper laser level and transfers atomic or molecular population to the upper laser level by a nonradiative process. In preferred embodiments, the intermediate level is within a few kT of the upper laser level and the primary amount of energy is a large majority of the total energy. A laser device includes metal vapor and noble gas mixture laser medium to populate an intermediate level near an upper laser level, and pumping a lesser amount of energy into a highly excited level to stimulate laser output. The medium can be an Rb vapor and Xe gas mixture in preferred embodiments. A primary energy pump pumps population in a near red satellite band. A second energy pump having substantially less energy than the primary energy pump pumps population to a highly excited level.
Abstract:
A method for achieving high-power solid-state lasers by multiple beams combination using cascaded compound laser oscillators, comprising the following steps: 1) Designing a compound resonator to achieve an output beam perpendicular to the axis of oscillation in which a compensating lens is used; 2) Designing beam combination of two independent solid-state lasers in cascaded compound cavities and using 4f optical system to compensate the beam waist separation between two lasers; 3) Based on the first two steps, multiple beams combination of N independent solid-state lasers can be achieved. In the present invention, N output beams emitted from N independent solid-state lasers are completely combined, and the combined beams hold the same waist position, size and divergence along down the same optical axis. Therefore, it can preserve original beam quality with that of individual solid-state lasers.