Abstract:
An electrical system wherein the electrical conductive traces on the circuit boards are routed to achieve a balanced net to reduce noise caused by transmission line reflections. A trace is routed from the source terminal of the net to a balanced junction wherein if there are an odd number of load terminals, or loads, the balanced junction is located at one of the loads. The remaining loads are grouped into branches wherein each branch includes an equal number of loads. A trace is routed between each of the loads of each branch to serially connect the loads of each branch together, or, a trace is routed from a center one of the branch loads to each of the remaining branch loads, forming subbranches. In an alternate embodiment, a balanced subbranch is developed. The balanced load is connected to a pseudo-balanced load, which further receives an equal number of branches. The pseudo-balanced load is then connected to another pseudo-balanced load, which may also receive an equal number of branches. This pseudo-balanced load is connected to the source. In another alternative, two balanced subbranches have their balanced loads connected to a central balanced load. This balanced load may receive even further numbers of equal branches. The balanced load is connected to the source.
Abstract:
A resistive element is formed on a printed circuit board using only printed circuit board fabrication techniques. A substrate having a bi-metallic cladding on one side of the substrate and a conductive metallic cladding on an opposing side of the substrate is used. A predetermined trace pattern is formed in the metallic cladding. Resistive elements are formed in the bi-metallic cladding opposing their desired locations in the trace pattern. The bi-metallic cladding consists of a resistive layer between the substrate and a second conductive layer. Tabs are etched in the second conductive layer, then resistors, which couple various tabs together, are etched in the resistive layer. Plated holes connect the tabs to desired locations in the trace pattern located on the opposing side of the substrate.
Abstract:
Power dividers (or splitters) and power combiners may be implemented using distributed lossy transmission lines that dissipate radio frequency (RF) and other electromagnetic (EM) signal energy. By taking advantage of natural PCB board loss at high operating frequencies, N-way power dividers with matched outputs and good isolation may be implemented without the use of discrete resistors. In one embodiment, a N-way power divider may be at least partially implemented on buried printed circuit board (PCB) layers (e.g., partially embedded) and, in a further embodiment a N-way may be implemented in a manner that is completely internal to the PCB (e.g., completely embedded), without the use of discrete resistors.
Abstract:
An electrical module is provided. The electrical module includes a circuit board. The circuit board includes at least one bonding pad. The bonding pad includes a bonding line and a plurality of traces. The traces are connected to the bonding line. The traces are configured in a radial manner. The bonding line includes a first section and a second section. The first section is connected to the second section. The first section extends in a first direction. The second section extends in a second direction. The first direction is perpendicular to the second direction. An extending direction of at least one of the traces differs from the first direction and the second direction.
Abstract:
By flexographic printing or inkjet printing, insulating ink is applied on a wiring pattern in accordance with a predetermined printing pattern. The insulating ink is hardened, whereby an insulating layer is formed. A contact region of the wiring pattern that is used for electrical connection with a conductor other than the wiring pattern is not covered with the insulating layer. The printing pattern is delimited by the outline of a non-printing region including the contact region. The wiring pattern includes, in the non-printing region, a trunk wiring line leading, to the contact region, from a position on the wiring pattern at which the wiring pattern overlaps with the outline and a branch wiring line extending from a point on at least one side of the trunk wiring line and terminating without making contact with the outline.
Abstract:
An embodiment discloses a light source module. The disclosed light source module includes: a circuit board; and a plurality of light emitting diodes arranged on the circuit board, wherein the plurality of light emitting diodes include a plurality of first light emitting diodes connected to a power input terminal, and a plurality of second light emitting diodes connected to output ends of the plurality of first light emitting diodes, wherein the plurality of first light emitting diodes are spaced apart from each other, and at least two of the plurality of second light emitting diodes are disposed between the first light emitting diodes, respectively.
Abstract:
By flexographic printing or inkjet printing, insulating ink is applied on a wiring pattern in accordance with a predetermined printing pattern. The insulating ink is hardened, whereby an insulating layer is formed. A contact region of the wiring pattern that is used for electrical connection with a conductor other than the wiring pattern is not covered with the insulating layer. The printing pattern is delimited by the outline of a non-printing region including the contact region. The wiring pattern includes, in the non-printing region, a trunk wiring line leading, to the contact region, from a position on the wiring pattern at which the wiring pattern overlaps with the outline and a branch wiring line extending from a point on at least one side of the trunk wiring line and terminating without making contact with the outline.
Abstract:
Various embodiments disclosed relate to a circuit. The circuit includes a transceiver adapted to generate a signal. A stranded transmission line is connected to the transceiver. The signal is then transmitted through the first pair of conductive strands.
Abstract:
An apparatus including an output driver on a PCB and a number of chips on the PCB, the chips including a first chip and a second chip. The PCB includes a first transmission line connected to the output driver, a second transmission line connected to the first transmission line and the first chip, the second transmission line having a length greater than or equal to 10 times a length of the first transmission line, and a third transmission line connected to the first transmission line and the second chip, the third transmission line having a length greater than or equal to 10 times the length of the first transmission line. The second transmission line connects to the first chip without being coupled to a termination resistor on the PCB and the third transmission line connects to the second chip without being coupled to a termination resistor on the PCB.
Abstract:
A high-frequency module includes: a power receiving terminal; an LNA, a reception switch that switches among a plurality of signals in different bands and outputs the signals to the LNA; a first conduction path spanning from the power receiving terminal to a power source terminal of the reception switch; a second conduction path spanning from a branching point in the first conduction path to a power source terminal of the LNA; a third conduction path branching from at least one of the first conduction path and the second conduction path and spanning to a ground; and a capacitor inserted into the third conduction path. A second inductance of the second conduction path is greater than a first inductance of a part spanning from the branching point in the first conduction path to the power source terminal.