Abstract:
A p-type thermoelectric material according to one aspect of the present invention is configured such that at least any one of a Mg site, a Si site, a Sn site and/or a Ge site in a compound composed of magnesium (Mg), silicon (Si), tin (Sn) and germanium (Ge) is substituted with any one or more elements selected from the group consisting of alkali metals of group 1A and gold (Au), silver (Ag), copper (Cu), zinc (Zn), calcium (Ca) and gallium (Ga) of group 1B.
Abstract:
The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
Abstract:
A fluorophor includes: α-type sialon crystal which is expressed by a general formula: (Lix1, Eux2)(Si12−(m+n)Alm+n)(OnN16−n), wherein x1 is an amount of solid solution of Li in a sialon unit cell, and x2 is an amount of solid solution of Eu in the sialon unit cell, wherein the parameters x1, x2, m, and n satisfy: 1.6≦x1≦2.4 (1), 0.001≦x2≦0.4 (2), 1.8≦m≦2.4 (3), 0.8≦n≦1.2 (4), wherein the α-type sialon crystal emits fluorescence with a peak in a wavelength region of from 550 nm to 575 nm upon irradiation of an excitation source.
Abstract:
A production method of a phosphor includes firing a starting material mixture in a nitrogen atmosphere at a temperature range between 1,500° C. inclusive and 2,200° C. inclusive. The starting material mixture is a mixture of metallic compounds, and is capable of constituting a composition including M, A, Al, O, and N (M is Eu; and A is one kind or two or more kinds of element(s) selected from C, Si, Ge, Sn, B, Ga, In, Mg, Ca, Sr, Ba, Sc, Y, La, Gd, Lu, Ti, Zr, Hf, Ta, and W) by firing.
Abstract:
An apparatus for measuring for measuring coefficient of restitution which is capable of reducing a mass effect and performing tests in free directions, is disclosed. The apparatus for measuring coefficient of restitution includes a holder for holding a spherical indenter, an ejection mechanism configured to eject the indenter held by the holder from the holder to a specimen, a speed measuring unit configured to measure an impact speed that is a speed of the indenter before the indenter impacts against the specimen, and a rebound speed that is a speed of the indenter after the indenter is rebounded from the specimen; and an arithmetic unit configured to calculate a coefficient of restitution that is a ratio of the rebound speed to the impact speed.
Abstract:
Magnetic refrigerating device improves refrigerating capacity and efficiency by improving the heat exchanging method between a magnetic material and a heat exchanging fluid and devising a magnetic field applying method. The magnetic refrigerating device comprises: a cylindrical active magnetic regenerator (AMR) bed accommodating refrigerant therein; two magnetic materials disposed in the AMR bed in the axial direction, configured to be movable in the axial direction of the AMR bed, and made of material having a magnetocaloric effect; at least two permanent magnets positioned to face the two magnetic materials; a rotary shaft positioned between the two magnetic materials in the AMR bed and positioned between the at least two permanent magnets; and a magnetic rotary movement unit that rotationally moves the permanent magnets about the rotary shaft and that repeatedly moves the permanent magnets and the two magnetic materials closer together and farther apart in association with the rotational movement.
Abstract:
According to one embodiment of the present invention, the light emitting device includes an LED element, a side wall which surrounds the LED element, a phosphor layer which is fixed to the side wall with an adhesive layer therebetween, and is positioned above the LED element, and a metal pad as a heat dissipating member. The side wall includes an insulating base which surrounds the LED element and a metal layer which is formed on a side surface at the LED element side of the base, and is in contact with the metal pad and the adhesive layer. The adhesive layer includes a resin layer that includes a resin containing particles which have higher thermal conductivity than the resin or a layer that includes solder.
Abstract:
By using silicon oxynitride with an oxygen content of 4.2 to 37.5 at % as a material for a barrier layer, adhesiveness similar to that of silicon oxide and an Ag diffusion prevention property similar to that of silicon nitride can be realized. In particular, in a semiconductor device in which a plurality of silicon chips is vertically stacked by through-silicon vias, Ag is prevented from being diffused into Si and adhesiveness to Si becomes favorable when an Ag/polypyrrole complex is used as a conductive filling material used for the formation of a barrier layer provided on the inner surface of the via.
Abstract:
The present invention relates to an organic/heterometallic hybrid polymer including a plurality of organic metal complexes and a plurality of transition metals, the organic/heterometallic hybrid polymer, whereinthe plurality of organic metal complexes are linked in a linear manner by sandwiching each of the plurality of transition metals therebetween,the organic metal complexes include two ligands each having a terpyridyl group and one connector having Ru(dppe)2 and two ethynylene groups, and the two ligands are linked by the connector, so that a nitrogen atom at position 1′ of the terpyridyl group is directed toward the terminal side of the molecule of the organic metal complex, andthe terpyridyl groups of at least two different organic metal complexes of the plurality of organic metal complexes are bound to one of the transition metals through a coordinate bond, thereby linking the plurality of organic metal complexes while sandwiching the plurality of transition metals alternately therebetween.
Abstract:
A containment vessel of a thin lithium-air battery with improved safety is provided. By using the containment vessel, an explosive reaction (ignition) of the electrolyte including lithium metal or ion can be suppressed. The containment vessel (1001) includes: a containment chamber (201) containing the thin lithium-air battery (101). It further includes: a first gas pipe (202B) and a second gas pipe (202D) communicated with an inside of the containment chamber (201); a third gas pipe (202A) and a fourth gas pipe (202C) communicated with an inside of the thin lithium-air battery (101); and a valve (204C) that is provided to the third gas pipe (202A) and controls opening and closing of communication to the containment chamber (201), wherein an inert gas supply source is provided to the first gas pipe (202B), and an air or oxygen supply source is provided to the third gas pipe (202A).