摘要:
A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry.
摘要:
A method for forming a thin film transistor includes joining a crystalline substrate to an insulating substrate. A doped layer is deposited on the crystalline substrate, and the doped layer is patterned to form source and drain regions. The crystalline substrate is patterned to form an active area such that a conductive channel is formed in the crystalline substrate between the source and drain regions. A gate stack is formed between the source and drain regions, and contacts are formed to the source and drain regions and the gate stack through a passivation layer.
摘要:
Junction field-effect transistors including inorganic channels and organic gate junctions are used in some applications for forming high resolution active matrix displays. Arrays of such junction field-effect transistors are electrically connected to thin film switching transistors and provide high drive currents for passive devices such as organic light emitting diodes.
摘要:
A hybrid integrated circuit device includes a semiconductor-on-insulator substrate having a base substrate, a semiconductor layer and a dielectric layer disposed therebetween, the base substrate being reduced in thickness. First devices are formed in the semiconductor layer, the first devices being connected to first metallizations on a first side of the dielectric layer. Second devices are formed in the base substrate, the second devices being connected to second metallizations formed on a second side of the dielectric layer opposite the first side. A through via connection is configured to connect the first metallizations to the second metallizations through the dielectric layer. Pixel circuits and methods are also disclosed.
摘要:
Device architectures based on trapping and de-trapping holes or electrons and/or recombination of both types of carriers are obtained by carrier trapping either in near-interface deep ambipolar states or in quantum wells/dots, either serving as ambipolar traps in semiconductor layers or in gate dielectric/barrier layers. In either case, the potential barrier for trapping is small and retention is provided by carrier confinement in the deep trap states and/or quantum wells/dots. The device architectures are usable as three terminal or two terminal devices.
摘要:
High resolution active matrix nanowire circuits enable a flexible and stretchable platform for probing neural circuits. Fabrication of such circuits includes forming an array of transistors using a semiconductor-on-insulator substrate. Electrically isolated arrays of vertically extending, electrically conductive wires are formed from a doped, electrically conductive layer within the substrate, each of the arrays of wires being electrically connected to a transistor in the array of transistors.
摘要:
A method for fabricating a photovoltaic device includes forming a first contact on a crystalline substrate, by epitaxially growing a first doped layer having a doping concentration of 1019 cm−3 or greater, a dislocation density of 105 cm−2 or smaller, a hydrogen content of 0.1 atomic percent or smaller, and a thickness configured to reduce Auger recombination in the epitaxially grown doped layer. A first passivation layer is formed on the first doped layer. A second contact is formed on the crystalline substrate on a side opposite the first contact by epitaxially growing a second doped layer having a doping concentration of 1019 cm−3 or greater, a dislocation density of 105 cm−2 or smaller, a hydrogen content of 0.1 atomic percent or smaller and a thickness configured to reduce Auger recombination in the second epitaxially grown doped layer. A second passivation layer is formed on the second doped layer.
摘要:
A hybrid integrated circuit device includes a semiconductor-on-insulator substrate having a base substrate, a semiconductor layer and a dielectric layer disposed therebetween, the base substrate being reduced in thickness. First devices are formed in the semiconductor layer, the first devices being connected to first metallizations on a first side of the dielectric layer. Second devices are formed in the base substrate, the second devices being connected to second metallizations formed on a second side of the dielectric layer opposite the first side. A through via connection is configured to connect the first metallizations to the second metallizations through the dielectric layer. Pixel circuits and methods are also disclosed.
摘要:
An optoelectronic device may include an insulating substrate, a semiconductor channel region located on the insulating substrate, and a source region and a drain region in contact with the semiconductor channel region. A photoswitchable material may be located on the semiconductor channel region between the source region and the drain region, such that the photoswitchable material includes a first structural state based on being exposed to a first optical wavelength, and includes a second structural state based on being exposed to a second optical wavelength. The first structural state causes a first electrical current to flow between the source region and the drain region, while the second structural state causes a second electrical current to flow between the source region and the drain region.
摘要:
A method of forming the heterojunction bipolar transistor that includes providing a stack of a base layer, an extrinsic base layer, a first metal containing layer, and a dielectric cap layer. The dielectric cap layer and the first metal containing layer may be etched to provide a base contact and a dielectric cap. Exposed portions of the base layer may be etched selectively to the dielectric cap. A remaining portion of the base layer provides the base region. A hydrogenated silicon containing layer may be deposited with a low temperature deposition method. At least a portion of the hydrogenated silicon containing layer is formed on at least sidewalls of the base region. A second metal containing layer may be formed on the hydrogenated silicon containing layer. The second metal containing and the hydrogenated silicon containing layer may be etched to provide an emitter region and a collector region.