Abstract:
An oxide semiconductor layer which is intrinsic or substantially intrinsic and includes a crystalline region in a surface portion of the oxide semiconductor layer is used for the transistors. An intrinsic or substantially intrinsic semiconductor from which an impurity which is to be an electron donor (donor) is removed from an oxide semiconductor and which has a larger energy gap than a silicon semiconductor is used. Electrical characteristics of the transistors can be controlled by controlling the potential of a pair of conductive films which are provided on opposite sides from each other with respect to the oxide semiconductor layer, each with an insulating film arranged therebetween, so that the position of a channel formed in the oxide semiconductor layer is determined.
Abstract:
The versatility of a power feeding device is improved. A power storage system includes a power storage device and a power feeding device. The power storage device includes data for identifying the power storage device. The power storage device includes a power storage unit, a switch that controls whether power from the power feeding device is supplied to the power storage unit, and a control circuit having a function of controlling a conduction state of the switch in accordance with a control signal input from the power feeding device. The power feeding device includes a signal generation circuit having a function of identifying the power storage device by the data input from the power storage device, generating the control signal corresponding to the identified power storage device, and outputting the generated control signal to the power storage device.
Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract translation:在包括显示部分中的多个像素并且被配置为在多个帧周期中进行显示的液晶显示装置中,每个帧周期包括写入周期和保持周期,并且在将图像信号输入到每个 在所述写入周期中的所述多个像素中,包括在所述多个像素中的每一个中的晶体管被截止,并且所述图像信号在所述保持周期中保持至少30秒。 像素包括具有氧化物半导体层的半导体层,氧化物半导体层的载流子浓度小于1×10 14 / cm 3。
Abstract:
An object is to provide a liquid crystal display device which can recognize image display even when the liquid crystal display device is used in a dim environment. In one pixel, a pixel electrode including both of a region where incident light through a liquid crystal layer is reflected and a transmissive region is provided, and image display can be performed in both modes: the reflective mode where external light is used as an illumination light source; and the transmissive mode where the backlight is used as an illumination light source. When there is external light with insufficient brightness, that is, in a dim environment, the backlight emits weak light and an image is displayed in the reflective mode, whereby image display can be performed.
Abstract:
The silicon nitride layer 910 formed by plasma CVD using a gas containing a hydrogen compound such as silane (SiH4) and ammonia (NH3) is provided on and in direct contact with the oxide semiconductor layer 905 used for the resistor 354, and the silicon nitride layer 910 is provided over the oxide semiconductor layer 906 used for the thin film transistor 355 with the silicon oxide layer 909 serving as a barrier layer interposed therebetween. Therefore, a higher concentration of hydrogen is introduced into the oxide semiconductor layer 905 than into the oxide semiconductor layer 906. As a result, the resistance of the oxide semiconductor layer 905 used for the resistor 354 is made lower than that of the oxide semiconductor layer 906 used for the thin film transistor 355.
Abstract:
To provide a semiconductor device including a capacitor whose charge capacity is increased without reducing the aperture ratio. The semiconductor device includes a transistor including a light-transmitting semiconductor film, a capacitor where a dielectric film is provided between a pair of electrodes, an insulating film provided over the light-transmitting semiconductor film, and a light-transmitting conductive film provided over the insulating film. In the capacitor, a metal oxide film containing at least indium (In) or zinc (Zn) and formed on the same surface as the light-transmitting semiconductor film in the transistor serves as one electrode, the light-transmitting conductive film serves as the other electrode, and the insulating film provided over the light-transmitting semiconductor film serves as the dielectric film.
Abstract:
An object of the present invention is to provide a small-sized active matrix type liquid crystal display device that may achieve large-sized display, high precision, high resolution and multi-gray scales. According to the present invention, gray scale display is performed by combining time ratio gray scale and voltage gray scale in a liquid crystal display device which performs display in OCB mode. In doing so, one frame is divided into subframes corresponding to the number of bit for the time ratio gray scale. Initialize voltage is applied onto the liquid crystal upon display of a subframe.
Abstract:
A solid-state image sensor which holds a potential for a long time and includes a thin film transistor with stable electrical characteristics is provided. When the off-state current of a thin film transistor including an oxide semiconductor layer is set to 1×10−13 A or less and the thin film transistor is used as a reset transistor and a transfer transistor of the solid-state image sensor, the potential of the signal charge storage portion is kept constant, so that a dynamic range can be improved. When a silicon semiconductor which can be used for a complementary metal oxide semiconductor is used for a peripheral circuit, a high-speed semiconductor device with low power consumption can be manufactured.
Abstract:
In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
Abstract translation:在包括显示部分中的多个像素并且被配置为在多个帧周期中进行显示的液晶显示装置中,每个帧周期包括写入周期和保持周期,并且在将图像信号输入到每个 在所述写入周期中的所述多个像素中,包括在所述多个像素中的每一个中的晶体管被截止,并且所述图像信号在所述保持周期中保持至少30秒。 像素包括具有氧化物半导体层的半导体层,氧化物半导体层的载流子浓度小于1×10 14 / cm 3。
Abstract:
A semiconductor device includes an oxide layer, a source electrode layer in contact with the oxide layer, a first drain electrode layer in contact with the oxide layer, a second drain electrode layer in contact with the oxide layer, a gate insulating film in contact with the oxide layer, a first gate electrode layer overlapping with the source electrode layer and the first drain electrode layer and overlapping with a top surface of the oxide layer with the gate insulating film interposed therebetween, a second gate electrode layer overlapping with the source electrode layer and the second drain electrode layer and overlapping with the top surface of the oxide layer with the gate insulating film interposed therebetween, and a third gate electrode layer overlapping with a side surface of the oxide layer with the gate insulating film interposed therebetween.