Abstract:
The invention disclosed herein relates to the use of laser energy to weld or melt selected locations in papermachine clothing (“PMC”) and other industrial and engineered fabrics. The invention also relates to an improved seam for a papermaker or other industrial fabric that has properties such as strength, durability, openness, adequate number of support points, and fiber support index (FSI) essentially the same as the fabric body. The invention also relates to a fabric having a durable seam, wherein the seam width as measured in the MD is a fraction of the width of a normal seam or a seam that is formed using a conventional technique of equal strength.
Abstract:
A layered product which is a molded object comprising a thermoset resin layer, a thermoplastic resin layer, and reinforcing fibers comprising many continuous filaments, wherein the thermoset resin layer has been united with the thermoplastic resin layer at the interface between these layers, the resin of the thermoset resin layer and the resin of the thermoplastic resin layer each having an irregular surface shape at the interface, and a group of filaments among the reinforcing fibers are in contact with at least the resin of the thermoset resin layer and the other group of filaments among the reinforcing fibers are in contact with at least the resin of the thermoplastic resin layer, that side of the thermoplastic resin layer which is opposite to the interface being a surface of the molded object.
Abstract:
Device and method for needle penetrating and filling a chamber with a predetermined substance, and hermetically resealing a resulting needle hole in the device by applying radiation thereto. The needle penetrable and resealable portion defines a predetermined wall thickness in an axial direction thereof, and may include a thermoplastic that substantially prevents the formation of particles released into the chamber from the needle penetrable and resealable portion during penetration by and withdrawal of the needle. Such thermoplastic may include a predetermined amount of pigment that allows the thermoplastic to substantially absorb laser radiation at a predetermined wavelength, substantially prevent the passage of radiation through the predetermined wall thickness thereof, and hermetically seal a needle aperture formed in the needle penetration region thereof in a predetermined time period.
Abstract:
A method is provided for connecting a filter medium to a connection element, wherein the filter medium and the connection element are brought into contact with each other and connected to each other by exposure to laser radiation. The connection element may be welded to the end faces of filter folds in strips having a width of 1 mm. The connection element may include a laser light-absorbing layer and a laser light-transparent layer. The filter medium and connection elements may comprise nonwoven fabrics.
Abstract:
In a method for manufacturing a filter end disc (7), for example for a fluid filter (14) of a motor vehicle, a first plastic molding material (M1) and a second plastic molding material (M2) are injected in succession into a tool mold (1) in a monosandwich method or co-injection method in such a way that the second plastic molding material (M2) is substantially surrounded by the first plastic molding material (M1). To manufacture a fluid filter, the filter end disc (7) is further irradiated by a radiation beam (L) having pre-determined beam characteristics for melting the first plastic molding material (M1), and a filter material (15) is applied to the at least partially melted first plastic molding material (M1). A filter end disc (7), in particular for a fluid filter (14) of a motor vehicle, said disc being manufactured according to a monosandwich method or co-injection method, comprises a first outer plastic molding material (M1) and a second inner plastic molding material (M2). In the process, the second plastic molding material (M2) is surrounded by the first plastic molding material (M1) and the first plastic molding material (M1) is impermeable to water and/or water vapor.
Abstract:
A film bonding method of bonding a die bond film without causing any breakage. The die bond film is pressed against a wafer having a surface protective tape bonded thereto using a film-setting roller and a film-bonding roller, and a laser beam having a predetermined shape is irradiated to an area between the rollers. While rotationally moving the film-setting roller and the film-bonding roller, the laser beam is scanned on the wafer in accordance with their motion, and a portion of the die bond film, melted by the laser beam, is pressed against the wafer by the film-bonding roller following the film-setting roller to bond the die bond film to the wafer. Since the die bond film is bonded to the wafer by melting the same by the laser beam, even if the wafer is thin and reduced in its strength, it is possible to avoid the wafer from being damaged e.g. by thermal contraction of the surface protective tape.
Abstract:
Flexible tubular liner coating systems are described herein. A method for coating and forming the flexible tubular inner liner may comprise, in one example, coating at least a first surface of a flexible elongate strip having a first and a second edge and then bringing the first and second edges of the flexible elongate strip into proximity of one another. Once the edges are brought towards one another, they may be joined such that a flexible tubular liner is formed having the coated first surface formed as an inner surface of the flexible tubular liner. Flexible tubular liner coating systems are described herein. A method for coating and forming the flexible tubular inner liner may comprise, in one example, coating at least a first surface of a flexible elongate strip having a first and a second edge and then bringing the first and second edges of the flexible elongate strip into proximity of one another. Once the edges are brought towards one another, they may be joined such that a flexible tubular liner is formed having the coated first surface formed as an inner surface of the flexible tubular liner.
Abstract:
A moulding compound for joining two mouldings each made of a PA11 and/or PA12 moulding compound contains at least 50% by weight of a polyamide component so chosen that it is preparable from linear aliphatic diamines and dicarboxylic acids and/or lactams or ω-aminocarboxylic acids, there being 11 to 12 carbon atoms present per carboxamide group in the repeating units, and, furthermore, this polyamide component containing not more than 80% by weight of either one of the polyamides PA11 and PA12. With this compound a firm weld is obtained both to a PA11 moulding and to a PA12 moulding.
Abstract:
A stent is formed by encasing or encapsulating metallic rings in an inner polymeric layer and an outer polymeric layer. At least one polymer link connects adjacent metallic rings. The stent is drug loaded with one or more therapeutic agent or drug, for example, to reduce the likelihood of the development of restenosis in the coronary arteries. The inner and outer polymeric materials can be of the same polymer or different polymer to achieve different results, such as enhancing flexibility and providing a stent that is visible under MRI, computer tomography and x-ray fluoroscopy.
Abstract:
Housings for reverse osmosis filter cartridges and methods of making the same. The housings include: (1) a hollow cylindrical liner formed of a thermoplastic polymer that is adapted to surround a reverse osmosis filter cartridge; (2) a hollow head assembly that includes a transition collar portion formed of a thermoplastic polymer that is joined to said liner and a barrel portion formed of a chopped glass fiber-filled polymer that is overmolded onto said transition collar portion; (3) an end plug that is adapted to be received within an opening in the barrel portion; and (4) an overwrap layer comprising wound glass filaments and a polymeric resin that covers the outer surfaces of the liner and head assembly.