Abstract:
A plating apparatus 20 includes a substrate holding device 110 configured to hold a substrate W; a discharging device 21 configured to discharge a plating liquid 35 toward the substrate W held by the substrate holding device 110; and a plating liquid supplying device 30 connected to the discharging device 21 and configured to supply the plating liquid 35 to the discharging device 21. A gas supplying device 170 is configured to heat a heating gas G having a higher specific heat capacity than air and supply the heated heating gas G toward the substrate W held by the substrate holding device 110. Further, a controller 160 is configured to control at least the discharging device 21, the plating liquid supplying device 30, and the gas supplying device 170.
Abstract:
An apparatus for a plating process includes: an outer chamber; an inner chamber covered by the outer chamber; a rotatable holding mechanism configured to hold a substrate horizontally and installed in the inner chamber; a fluid supply unit configured to supply a plating solution to a preset position on the substrate; a gas supply device configured to generate a nonreactive gas and control a temperature of the nonreactive gas; a gas supply hole configured to supply the nonreactive gas into the outer chamber and provided in a top surface of the outer chamber; a plurality of gas inlet openings provided at a sidewall of the inner chamber and spaced apart at equal distances; and a rectifying plate disposed above the substrate and below the plurality of gas inlet openings inside the inner chamber, the rectifying plate having a plurality of rectifying holes uniformly disposed in the rectifying plate.
Abstract:
An apparatus for a plating process includes: an outer chamber; an inner chamber covered by the outer chamber; a rotatable holding mechanism configured to hold a substrate horizontally and installed in the inner chamber; a fluid supply unit configured to supply a plating solution to a preset position on the substrate; a gas supply device configured to generate a nonreactive gas and control a temperature of the nonreactive gas; a gas supply hole configured to supply the nonreactive gas into the outer chamber and provided in a top surface of the outer chamber; a plurality of gas inlet openings provided at a sidewall of the inner chamber and spaced apart at equal distances; and a rectifying plate disposed above the substrate and below the plurality of gas inlet openings inside the inner chamber, the rectifying plate having a plurality of rectifying holes uniformly disposed in the rectifying plate.
Abstract:
A cap metal forming method capable of obtaining a uniform film thickness on the entire surface of a substrate is provided. A method for forming a cap metal on a processing surface of a substrate provided with two or more regions having different water-repellent properties, includes: holding the substrate horizontally by a rotatable holding mechanism installed in an inner chamber; supplying a gas between the inner chamber and an outer chamber covering the inner chamber via a gas supply hole provided in a top surface of the outer chamber; forming a pressure gradient between the inner chamber and the outer chamber; and supplying a plating solution to a preset position on the processing surface of the substrate after a pressure of the gas inside the inner chamber reaches a preset value so as to form the cap metal on at least one of the regions.
Abstract:
Remote-plasma treatments of surfaces, for example in semiconductor manufacture, can be improved by preferentially exposing the surface to only a selected subset of the plasma species generated by the plasma source. The probability that a selected species reaches the surface, or that an unselected species is quenched or otherwise converted or diverted before reaching the surface, can be manipulated by introducing additional gases with selected properties either at the plasma source or in the process chamber, varying chamber pressure or flow rate to increase or decrease collisions, or changing the dimensions or geometry of the injection ports, conduits and other passages traversed by the species. Some example processes treat surfaces preferentially with relatively low-energy radicals, vary the concentration of radicals at the surface in real time, or clean and passivate in the same unit process.
Abstract:
A method is provided which includes dispensing and removing different deposition solutions during an electroless deposition process to form different sub-films of a composite layer. Another method includes forming a film by an electroless deposition process and subsequently annealing the microelectronic topography to induce diffusion of an element within the film. Yet another method includes reiterating different mechanisms of deposition growth, namely interfacial electroless reduction and chemical adsorption, from a single deposition solution to form different sub-films of a composite layer. A microelectronic topography resulting from one or more of the methods includes a film formed in contact with a structure having a bulk concentration of a first element. The film has periodic successions of regions each comprising a region with a concentration of a second element greater than a set amount and a region with a concentration of the second element less than the set amount.
Abstract:
A main reservoir holds cool reactant liquid. A reaction vessel for treating a substrate is connected to the main reservoir by a feed conduit. A heater is configured to heat reactant liquid in the feed conduit before the liquid enters the reaction vessel. Preferably, the heater is a microwave heater. A recycle conduit connects the reaction vessel with the main reservoir. Preferably, a recycle cooler cools reactant liquid in the recycle conduit before the liquid returns to the main reservoir. Preferably, an accumulation vessel is integrated in the feed conduit for accumulating, heating, conditioning and monitoring reactant liquid before it enters the reaction vessel. Preferably, a recycle accumulator vessel is integrated in the recycle conduit to accommodate reactant liquid as it empties out of the reaction vessel.
Abstract:
An apparatus is provided having a closable chamber that can be sealed and is capable of withstanding an increased pressure and high temperature. The chamber has several inlet ports for the supply of various process liquids, such as deposition solutions, water for rinsing, etc., and a port for the supply of a gas under pressure. The apparatus also includes a solution heater and a control system for controlling temperature and pressure in the chamber. Uniform deposition is achieved by carrying out the deposition process under pressure and under temperature slightly below the boiling point of the solution. The solution can be supplied from above via a shower head formed in the cover, or through the bottom of the chamber. Rinsing or other auxiliary solutions are supplied via a radially moveable chemical dispensing arm that can be arranged above the substrate parallel thereto.
Abstract:
An electroless plating system includes a plating solution, and controlling reducing agents in the plating solution for deposition over outlier features smaller than about five hundred nanometers and isolated by about one thousand nanometers.
Abstract:
An apparatus for processing microelectronic topographies, a method of use of such an apparatus, and a method for passivating hardware of microelectronic processing chambers are provided. The apparatus includes a substrate holder configured to support a microelectronic topography and a rotatable case with sidewalls arranged on opposing sides of the substrate holder. The method of using such an apparatus includes positioning a microelectronic topography upon a substrate holder of a processing chamber, exposing the microelectronic topography to a fluid within the processing chamber, and rotating a case of the processing chamber. The rotation is sufficient to affect movement of the fluid relative to the surface of the microelectronic topography. A method for passivating hardware of a microelectronic processing chamber includes exposing the hardware to an organic compound and subsequently exposing the hardware to an agent configured to form polar bonds with the organic compound.