Abstract:
A control method of the present invention is a control method of controlling a fiber laser including a plurality of LD modules constituting a plurality of groups. The control method includes the steps of (a) detecting an intensity of laser light outputted from the fiber laser; and (b) controlling a driving current, so that, in a case where the intensity of the laser light which intensity has been detected in the step (a) is lower than a predetermined lower limit threshold, a driving current for LD modules in a specific group among the plurality of groups is increased.
Abstract:
A diode laser apparatus includes a plurality of spaced apart diode lasers, each of the diode lasers situated and configured to emit a diode laser beam substantially parallel to each other diode laser beam in an emission plane in a first direction, and a plurality of reflectors situated with respect to the diode lasers and configured to receive respective diode laser beams and to reflect the respective diode laser beams substantially parallel and out of the emission plane at a small angle therewith in a second direction such that the reflected diode laser beams are in a stacked configuration.
Abstract:
A laser beam-combining optical device according to the present invention includes a plurality of semiconductor laser arrays, and a reflective element that reflects a laser light beam emitted from at least one semiconductor laser array of the plurality of semiconductor laser arrays. When laser light beams emitted from respective ones of the plurality of semiconductor laser arrays are focused on a single focus point, the laser light beam emitted from the at least one semiconductor laser array is reflected by the reflective element, and is then focused on the focus point.
Abstract:
A laser drive device capable of easily reducing influence of bias light emission and thereby preventing variation in threshold current. A light amount of a laser beam emitted from a laser diode is detected by a photodiode. A drive current supplied to the laser diode is controlled according to the detected light amount to thereby control the amount of light emitted from the laser diode to a plurality of set light amounts. A threshold current is calculated according to the detected light amount and the drive current. The light amounts are changed and selected, and threshold currents calculated with respect to respective set light amounts are compared. A light amount corresponding to a difference in threshold current not less than a predetermined value is set as a set light amount for use in light amount control of the laser diode.
Abstract:
A system and method are disclosed for gas sensing over a wide tunable wavelength range provided by one or more quantum cascade lasers. A laser beam is generated within the wide tunable wavelength range, which is given by the sum of the wavelength ranges from the individual lasers. Gas sensing or detection is achieved by obtaining an infrared absorption spectrum for a sample contained in one or more cells having different path lengths for the laser beam.
Abstract:
A resonator fiber optic gyroscope comprises a master laser that emits a reference optical signal, a first slave laser that emits a first optical signal and is responsive to the reference optical signal through a first optical phase lock loop (OPLL), and a second slave laser that emits a second optical signal and is responsive to the reference optical signal through a second OPLL. A reference resonator in optical communication with the master laser receives the reference optical signal, and comprises a first fiber optic coil having a first cavity length. A gyro resonator, in optical communication with the first and second slave lasers, receives the first and second optical signals. The gyro resonator comprises a second fiber optic coil having a second cavity length longer than the first cavity length. The reference resonator has an operating frequency that substantially tracks with an operating frequency of the gyro resonator.
Abstract:
A semiconductor laser device includes a semiconductor laser element; a mounting body on which the semiconductor laser element is mounted; a base having a recess in which the mounting body is mounted and a through hole that penetrates a part of a bottom of the recess; and an embedded member disposed within the through hole. An uppermost surface of the embedded member is joined to a lowermost surface of the mounting body and a lowermost surface of the embedded member is positioned higher than a lowermost surface of the base.
Abstract:
A method and device for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, is provided. In various embodiments, the laser device includes plural laser emitters emitting green or blue laser light, integrated a substrate.
Abstract:
A transmitter optical module for emitting a polarization polarized combined beam is disclosed. The transmitter optical module includes optical sources each emitting optical beams with substantially the same polarizations, an optical isolator, and a polarization beam combiner. The optical isolator, by receiving the optical beams, outputs the optical beams with polarizations perpendicular to each other to the polarization beam combiner.
Abstract:
Method for mounting a semiconductor laser element (3) into a laser holder (1), comprising the following steps:providing a laser holder (1) comprising a metal body (2) equipped with a substantially cylindrical housing (20) and comprising a frontal end (21) equipped with a first aperture (210) for passage of the laser beam produced by said laser element, and a back end (22) equipped with a second aperture (220) for inserting said laser element (3), said body (2) being passed through by a first group of windows (51, 52) arranged radially in a first plane (P1) perpendicular to the axis (23) of said housing (20), the angular spacing between said windows (51, 52) being regular;inserting said semiconductor laser element (3) into said housing (20);inserting an adhesive (24) for fastening said semiconductor laser element (3) into said windows (51, 52); andsimultaneously setting the adhesive in said windows (51, 52) by means of ultraviolet light penetrating simultaneously into said windows (51, 52).