Abstract:
An amplification system, circuit, and method of performing offset cancellation are described. The disclosed amplification system is described as including a main amplifier circuit that receives an input signal and produces an output signal, a two-phase output sampler, and an offset correction circuit. The two-phase output sample samples the output signal of the main amplifier circuit in two different clock domains and determines a delta between the samples. The delta is used to assist the offset correction circuit in generating an offset correction feedback for the main amplifier circuit.
Abstract:
An operational amplifier includes an output stage, an input stage, a first auxiliary amplifier, and a second auxiliary amplifier. The output stage includes a first output transistor and a second output transistor. The input stage is configured to drive the output stage. The first auxiliary amplifier is coupled to an output of the input stage and to an input of the first output transistor. The first auxiliary amplifier is configured to bias the first output transistor for class AB operation and to isolate the input stage from a bias voltage applied to the first output transistor. The second auxiliary amplifier is coupled to the output of the input stage and to an input of the second output transistor. The second auxiliary amplifier is configured to bias the second output transistor for class AB operation, and to isolate the input stage from a bias voltage applied to the second output transistor.
Abstract:
Neural signal amplifiers include an operational amplifier and a feedback network coupled between an output and an input thereof. The feedback network includes a tunnel field effect transistor (“TFET”) pseudo resistor that exhibits bi-directional conductivity. A drain region of the TFET may be electrically connected to the gate electrode thereof to provide a bi-directional resistor having good symmetry in terms of resistance as a function of voltage polarity.
Abstract:
A system for a feedback transimpedance amplifier with sub-40 khz low-frequency cutoff is disclosed and may include amplifying electrical signals received via coupling capacitors utilizing a transimpedance amplifier (TIA) having feedback paths comprising source followers and feedback resistors. The feedback paths may be coupled prior to the coupling capacitors at inputs of the TIA. Voltages may be level shifted prior to the coupling capacitors to ensure stable bias conditions for the TIA. The TIA may be integrated in a CMOS chip and the source followers may comprise CMOS transistors. The TIA may receive current-mode logic or voltage signals. The electrical signals may be received from a photodetector, which may comprise a silicon germanium photodiode and may be differentially coupled to the TIA. The chip may comprise a CMOS photonics chip where optical signals for the photodetector in the CMOS photonics chip may be received via one or more optical fibers.
Abstract:
A detector system for time-of-flight (TOF) positron emission topography (PET) includes an analog silicon photomultiplier (aSiPM) configured to detect at least one photon event. The aSiPM has an anode and a cathode. A transformer has a first side electrically coupled to the aSiPM to form a low-impedance current loop between the anode and the cathode of the transformer. An impedance ratio of the transformer N reduces an effective terminal resistance of the aSiPM. An amplifier is electrically coupled to a second side of the transformer. The amplifier has negative feedback path configured to minimize the voltage swing between a non-inverting input and an inverting input. The negative feedback path reduces an effective terminal capacitance and an effective load impedance of the aSiPM.
Abstract:
An electronic device includes a transimpedance amplifier stage having an amplifier end stage of the class AB type and a preamplifier stage coupled between an output of a frequency transposition stage and an input of the amplifier end stage. A self-biased common-mode control stage is configured to bias the preamplifier stage. The preamplifier stage is formed by a differential amplifier with an active load that is biased in response to the self-biased common-mode control stage.
Abstract:
This disclosure relates to the field of amplifiers for multi-level optical communication and more particularly to techniques for trans-impedance amplifiers (TIA) with gain control. The claimed embodiments address the problem of implementing a low cost TIA that exhibits high linearity, low noise, low power, and wide bandwidth. More specifically, some claims are directed to approaches for providing TIA gain control using a plurality of inverter-based replica gain control cells controlled by a feedback loop to manage the current into the amplifying output stage and thereby the TIA output voltage.
Abstract:
A transistor cell can be modeled as a transistor with a collector, a base, and an emitter operating with a current at the collector to produce a minimum transconductance in the transistor cell that increases a current gain and improves at least one operating characteristic of the transistor cell. The operating characteristics include bandwidth, gain, and output power.
Abstract:
A transimpedance amplifier circuit (1) includes an amplifier (22) that amplifies a received signal, an automatic gain control (AGC) circuit (2) that controls the amplification gain of the amplifier by a first time constant in accordance with the level of the received signal, and a first selection circuit (25) that selects the first time constant from a plurality of predetermined values. This can simultaneously implement a short time constant of an AGC function necessary to instantaneously respond to a burst signal and a long time constant of the AGC function necessary to obtain a satisfactory bit error rate (BER) characteristic in a continuous signal by an inexpensive and compact circuit arrangement.
Abstract:
A method and circuit for determining a circuit element parameter in a ground fault circuit interrupter circuit. An electrical signal provided to a first node is used to generate another electrical signal at a second node. The electrical signal at the second node is multiplexed with a modulation signal to generate a modulated signal that is then filtered and converted into a digital representation of a portion of the circuit element parameter. The electrical signal at the second node is multiplexed with the modulation signal after it has been phase shifted to produce a modulated signal that is filter and converted into a digital representation of another portion of the circuit element parameter. In another aspect, a slope based solenoid self-test method is used for self-testing in a GFCI circuit. Alternatively, a method for determining a wiring fault is provided using a digital filter.