Abstract:
A method, apparatus, and electronic device for regulating communication are disclosed. A first radio 304 may execute a coordination communication operation using a coordination protocol. A coordinator layer 230 may determine an optimum protocol for a communication operation based on the coordination communication operation. A second radio 302 may use the optimum protocol.
Abstract:
An organic semiconductor device (11) can be embedded within a printed wiring board (10). In various embodiments, the embedded device (11) can be accompanied by other organic semiconductor devices (31) and/or passive electrical components (26). When so embedded, conductive vias (41, 42, 43) can be used to facilitate electrical connection to the embedded device. In various embodiments, specific categories of materials and/or processing steps are used to facilitate the making of organic semiconductors and/or passive electrical components, embedded or otherwise.
Abstract:
A first and second capacitor plate are provided (101 and 102). Each capacitor plate has an opening disposed therethrough with the second capacitor plate being disposed substantially opposite the first capacitor plate. A first electrically conductive path interface is then disposed (103) in one of these openings as is at least a second electrically conductive path interface (104).
Abstract:
An electronic device (100) having at least a first portion (102) and a second portion (104) is disclosed. The first portion is joined to the second portion by a mechanical connection. The electronic device (100) includes a first communication unit (106) present on the first portion (102), and a second communication unit (108) present on the second portion (104). The first communication unit (106) and the second communication unit (108) provide a first link for internal data communication between the first portion (102) and the second portion (104), when communicatively engaged with each other. Further, at least one of the first communication unit (106) and the second communication unit (108) provide a second link for external data communication with an external device when the first communication unit (106) and the second communication unit (108) are not communicatively engaged with each other.
Abstract:
One of a plurality of capacitors embedded in a printed circuit structure includes a first electrode (415) overlaying a first substrate layer (505) of the printed circuit structure, a crystallized dielectric oxide core (405) overlaying the first electrode, a second electrode (615) overlying the crystallized dielectric oxide core, and a high temperature anti-oxidant layer (220) disposed between and contacting the crystallized dielectric oxide core and at least one of the first and second electrodes. The crystallized dielectric oxide core has a thickness that is less than 1 micron and has a capacitance density greater than 1000 pF/mm2. The material and thickness are the same for each of the plurality of capacitors. The crystallized dielectric oxide core may be isolated from crystallized dielectric oxide cores of all other capacitors of the plurality of capacitors.
Abstract translation:嵌入印刷电路结构中的多个电容器之一包括覆盖印刷电路结构的第一衬底层(505)的第一电极(415),覆盖第一电极的结晶化电介质氧化物芯(405),第二电极 615),以及设置在结晶的电介质氧化物芯和第一和第二电极中的至少一个之间并与其接触的高温抗氧化剂层(220)。 结晶的电介质氧化物芯的厚度小于1微米,电容密度大于1000pF / mm 2。 多个电容器的材料和厚度相同。 结晶的电介质氧化物芯可以与多个电容器的所有其它电容器的结晶的电介质氧化物芯隔离。
Abstract:
A device and method eliminates a shadowing effect on a touch input receiving device. The method includes receiving a touch input on a top layer that includes first conducting lines, a first current passing through the first conducting lines. The method includes determining a location of the touch input as a function of the first current passing through an intermediate layer as a second current to second conducting lines orthogonal to the first conducting lines of a bottom layer. The intermediate layer disposed between the top and bottom sides is configured as a resistive layer applying a resistance value to the first current upon the touch input being received. The first current continues through the first conducting lines along a remainder thereof as a third current after passing through the intermediate layer to eliminate the shadowing effect.
Abstract:
A method is disclosed for fabricating a patterned embedded capacitance layer. The method includes fabricating (1305, 1310) a ceramic oxide layer (510) overlying a conductive metal layer (515) overlying a printed circuit substrate (505), perforating (1320) the ceramic oxide layer within a region (705), and removing (1325) the ceramic oxide layer and the conductive metal layer in the region by chemical etching of the conductive metal layer. The ceramic oxide layer may be less than 1 micron thick.
Abstract:
A first and second capacitor plate are provided (101 and 102). Each capacitor plate has an opening disposed therethrough with the second capacitor plate being disposed substantially opposite the first capacitor plate. A first electrically conductive path interface is then disposed (103) in one of these openings as is at least a second electrically conductive path interface (104).
Abstract:
High quality epitaxial layers of piezoelectric monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the piezoelectric monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying piezoelectric monocrystalline material layer.
Abstract:
A meso-electromechanical system (900, 1100) includes a substrate (215), a standoff (405, 1160) disposed on a surface of the substrate, a first electrostatic pattern (205, 1105, 1110, 1115, 1120) disposed on the surface of the substrate, and a glass beam (810). The glass beam (810) has a fixed region (820) attached to the standoff and has a second electrostatic pattern (815, 1205, 1210, 1215, 1220) on a cantilevered location of the glass beam. The second electrostatic pattern is substantially co-extensive with and parallel to the first electrostatic pattern. The second electrostatic pattern has a relaxed separation (925) from the first electrostatic pattern when the first and second electrostatic patterns are in a non-energized state. In some embodiments, a mirror is formed by the electrostatic materials that form the second electrostatic pattern. The glass beam may be patterned using sandblasting (140).