摘要:
A semiconductor manufacturing process wherein silicon nitride is plasma etched with selectivity to an overlying and/or underlying dielectric layer such as a silicon oxide or low-k material. The etchant gas includes a fluorocarbon reactant and an oxygen reactant, the ratio of the flow rate of the oxygen reactant to that of the fluorocarbon reactant being no greater than 1.5. The etch rate of the silicon nitride can be at least 5 times higher than that of the oxide. Using a combination of CH3F and O2 with optional carrier gasses such as Ar and/or N2, it is possible to obtain nitride:oxide etch rate selectivities of over 40:1. The process is useful for simultaneously removing silicon nitride in 0.25 micron and smaller contact or via openings and wide trenches in forming structures such as damascene and self-aligned structures.
摘要:
Thin film deposition process endpoints and in situ-clean process endpoints are monitored using a single light filter and photodetector arrangement. The light filter has a peak transmission proximate a characteristic wavelength of the deposition plasma, such as Si, and one of the plurality of reaction products, such as NO, in the plasma chamber during in-situ cleaning. Emissions passing through the filter are converted to voltage measurements by a photodetector. In deposition endpoint monitoring, emission intensity of the Si emissions reflected off the surface of the substrate oscillate as deposition thickness increases, with each oscillation corresponding to a definite increase in thickness of the film. The endpoint of the deposition is reached when the number of oscillations in signal intensity versus time corresponds to a desired film thickness. Alternatively, a deposition rate for the film is calculated from the oscillation frequency of emissions reflected off the substrate. Endpoint occurs when the integrated deposition rate corresponds to the desired film thickness. In in-situ clean endpoint monitoring, the endpoint of the process is reached when emission intensity of the particular reaction product decreases to a substantially steady state value, meaning that the reaction is complete.
摘要:
The invention provides a process for plasma etching silicon carbide with selectivity to an overlapping and/or underlying dielectric layer of material. The etching gas includes a hydrogen-containing fluorocarbon gas such as CH3F, an oxygen-containing gas such as O2 and an optional carrier gas such as Ar. The dielectric material can comprise silicon dioxide, silicon nitride, silicon oxynitride or various low-k dielectric materials including organic low-k materials. In order to achieve a desired selectivity to such dielectric materials, the plasma etch gas chemistry is selected to achieve a desired etch rate of the silicon carbide while etching the dielectric material at a slower rate. The process can be used to selectively etch a hydrogenated silicon carbide etch stop layer or silicon carbide substrates.
摘要:
A chuck for processing a substrate includes a chuck body having a dielectric layer, the dielectric layer including a substrate receiving surface, the substrate receiving surface being at least as large as a substrate to be processed on the chuck. The chuck further includes an electrode buried in the chuck body, the electrode being larger than the substrate receiving surface such that edges of a radio frequency field generated by the electrode are all disposed beyond the substrate receiving surface. A method for depositing a film in a radio frequency biased plasma chemical deposition system is also disclosed.
摘要:
A method for removing organic material over a substrate is provided. The substrate is placed in a plasma processing chamber. A first gas is provided to an inner zone within the plasma processing chamber. A second gas is provided to an outer zone of the plasma processing chamber, wherein the outer zone surrounds the inner zone and the second gas has a carbon containing component, wherein a concentration of the carbon containing component of the second gas is greater than a concentration of the carbon containing component in the first gas. Plasmas are simultaneously generated from the first gas and second gas. Some or all of the organic material is removed using the generated plasmas.
摘要:
The present inventions is a method of trench formation within a dielectric layer, comprising, first, etching a via within the dielectric layer. After the via is etched, an organic plug is used to fill a portion of the via. After the desired amount of organic plug has been etched from the via, a trench is etched with a first gas mixture to a first depth, and a second gas mixture is used to further etch the trench to the final desired trench depth. Preferably, the method is used for low-k dielectrics that do not have an intermediate etch stop layer. Additionally, it is preferable that the first gas mixture is a polymeric gas mixture and the second gas mixture is a non-polymeric gas mixture. As a result of using this method, an interconnect structure for a low-k dielectric without an intermediate etch stop layer having a trench with trench edges that are substantially orthogonal and a via with via edges that are substantially orthogonal is generated.
摘要:
A method for filling a trench in a semiconductor wafer that is disposed in a plasma-enhanced chemical vapor deposition chamber. The method includes the step of depositing a protection layer of silicon dioxide over the wafer and into the trench while the wafer is biased at a first RF bias level. The protection layer has a thickness that is insufficient to completely fill the trench. Further, there is provided the step of forming a trench-fill layer of silicon dioxide over the protection layer and into the trench while the wafer is biased at a second RF bias level that is higher than the first bias level.
摘要:
A method for cleaning and conditioning a plasma processing chamber wherein oxide residues have been previously formed on interior surfaces of the chamber. The method includes introducing a cleaning gas including a fluorine-based gas into the chamber followed by performing a plasma cleaning step. The plasma cleaning step is performed by activating the cleaning gas mixture and forming a plasma cleaning gas, contacting interior surfaces of the chamber with the plasma cleaning gas and removing oxide residues on the interior surfaces. The cleaning step is followed by coating the interior surfaces with silicon dioxide to adhere loose particles to the interior surfaces and a conditioning step wherein uncoated interior surfaces are treated to remove fluorine therefrom. An advantage of the cleaning and conditioning method is that it is not necessary to open the chamber. Also, it is possible to remove oxide residues during the cleaning step and remove fluorine remaining after the cleaning step during the conditioning step. The conditioning step is carried out by introducing a hydrogen-containing gas into the chamber as a purge gas or the chamber can be pressurized by the hydrogen-containing gas followed by evacuating the chamber.
摘要:
The present inventions is a method of trench formation within a dielectric layer, comprising, first, etching a via within the dielectric layer. After the via is etched, an organic plug is used to fill a portion of the via. After the desired amount of organic plug has been etched from the via, a trench is etched with a first gas mixture to a first depth, and a second gas mixture is used to further etch the trench to the final desired trench depth. Preferably, the method is used for low-k dielectrics that do not have an intermediate etch stop layer. Additionally, it is preferable that the first gas mixture is a polymeric gas mixture and the second gas mixture is a non-polymeric gas mixture. As a result of using this method, an interconnect structure for a low-k dielectric without an intermediate etch stop layer having a trench with trench edges that are substantially orthogonal and a via with via edges that are substantially orthogonal is generated.
摘要:
Ionizable gas supplied to an electron cyclotron resonance vacuum plasma processor chamber for semiconductor wafers is excited to a plasma state by microwave energy coupled to the chamber. The level of microwave power reflected from the chamber controls the level of microwave power derived from a source driving the ionizable gas in the chamber.