摘要:
The present invention aims to provide a semiconductor laser device which has a structure that is easy to manufacture, a satisfactory temperature characteristic as well as high-speed response characteristic. The device includes the following: an n-type GaAs substrate 101; an n-type AlGaInP cladding layer 102 formed on the n-type GaAs substrate 101; a non-doped quantum well active layer 103; a p-type AlGaInP first cladding layer 104; a p-type GaInP etching stop layer 105; a p-type AlGaInP second cladding layer 106; a p-type GaInP cap layer 107; a p-type GaAs contact layer 108; and an n-type AlInP block layer 109. The device has a ridge portion and convex portions formed on both sides of the ridge portion, and the p-type GaAs contact layer 108 is formed on the ridge portion only.
摘要:
The present invention provides a method of mounting a semiconductor laser component capable of preventing deterioration of laser characteristics and destruction of the semiconductor laser component due to a rise in temperature and a residual stress of the semiconductor laser component, wherein the semiconductor laser component is mounted on a submount by heating and pressure-bonding, and is heated again up to a temperature more than a melting point of a bonding member at the released pressure to release the residual stress.
摘要:
A semiconductor laser has a first conduction-type cladding layer, an active layer, and a second conduction-type cladding layer formed on a first conduction-type semiconductor substrate. The second conduction-type cladding layer has a mesa-type stripe-shaped recessed portion in at least four spots, so as to form a central ridge portion, which constitutes a ridge-type current confinement portion, and two or more lateral ridge portions, which are positioned on both sides of the central ridge portion, have a height larger than to that of the central ridge portion, and include the second conduction-type cladding layer. An insulation film with a lower refractive index than the second conduction-type cladding layer is formed in a pair of stripes disposed respectively in the regions from the side surface of the second conduction-type cladding layer on both side surfaces of the central ridge portion toward the outside. The insulation film is not formed on the central ridge portion.
摘要:
A semiconductor laser device including: a semiconductor substrate of a first conductivity type; a cladding layer of the first conductivity type provided on the semiconductor substrate; an active layer provided on the cladding layer of the first conductivity type, the active layer having a super-lattice structure including a disordered region in a vicinity of at least one cavity end face; a first cladding layer of a second conductivity type provided on the active layer; an etching stop layer of the second conductivity type provided on the first cladding layer; and a second cladding layer of the second conductivity type provided on the etching stop layer, the second cladding layer forming a ridge structure, the ridge structure extending along a cavity length direction and having a predetermined width. A concentration of an impurity in the etching stop layer in the vicinity of the at least one cavity end face is greater than a concentration of the impurity in the interior of a cavity and equal to or smaller than about 2×1018 cm−3.
摘要:
The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
摘要:
In a semiconductor laser including an active layer and a buried layer for absorbing laser light emitted from the active layer, an oscillation wavelength of the laser light is in a 650 nm band, an oscillation mode is a single transverse mode, and a peak of a light intensity distribution of the laser light is placed on the side opposite to the buried layer with respect to the center of the active layer.
摘要:
A semiconductor laser includes at least an active layer and a saturable absorbing layer, and a compressive strain amount in the saturable absorbing layer is set to be greater than a value of compressive strain in the active layer by about 0.3% or more. Alternatively, a semiconductor laser includes at least an active layer, a saturable absorbing layer, and a light guiding layer disposed in the vicinity of the saturable absorbing layer; and a compressive strain amount in the saturable absorbing layer is greater than a value of compressive strain in the active layer by about 0.3% or more.
摘要:
A semiconductor light-emitting device with a double hetero structure, including: an active layer made of Ga.sub.1-x In.sub.x N (0.ltoreq.x.ltoreq.0.3) doped with a p-type impurity and an n-type impurity; and first and second cladding layers provided so as to sandwich the active layer.
摘要:
A semiconductor light-emitting device with a double hetero structure, including: an active layer made of Ga.sub.1-x In.sub.x N (0.ltoreq.x.ltoreq.0.3) doped with a p-type impurity and an n-type impurity; and first and second cladding layers provided so as to sandwich the active layer.
摘要:
The semiconductor laser of the present invention includes a first conductivity-type cladding layer, a second conductivity-type cladding layer having at least one ridge structure extending in the direction of a resonator, an active layer disposed between the two cladding layers and a current blocking layer provided so as to cover at least a side face of the ridge structure. The current blocking layer includes a hydrogenated first dielectric film. In the structure having the current blocking layer formed of a dielectric, a light confining efficiency is enhanced, a threshold value of laser oscillation decreases, and current properties during the oscillation at a high temperature and with a high power are improved.