Abstract:
A structure for protecting electronic package contacts is provided. The structure includes at least an electronic contact mounted on a chip, a dielectric layer, a conductor trace line and a protective layer. The protective layer is used to prevent stresses from being gathered within electronic contacts on the chip through surroundingly covering the conductor trace line.
Abstract:
A composite bump suitable for disposing on a substrate pad is provided. The composite bump includes a compliant body and an outer conductive layer. The coefficient of thermal expansion (CTE) of the compliant body is between 5 ppm/° C. and 200 ppm/° C. The outer conductive layer covers the compliant body and is electrically connected to the pad. The compliant body can provide a stress buffering effect for a bonding operation. Furthermore, by setting of the CTE of the compliant body within a preferable range, damages caused by thermal stress are reduced while the bonding effect is enhanced.
Abstract:
The invention is a silicon pressure micro-sensing device and the fabrication process thereof. The silicon pressure micro-sensing device includes a pressure chamber, and is constituted of a P-type substrate with a taper chamber and an N-type epitaxial layer thereon. On the N-type epitaxial layer are a plurality of piezo-resistance sensing units which sense deformation caused by pressure. The fabrication pressure of the silicon pressure micro-sensing device includes a step of first making a plurality of holes on the N-type epitaxial layer to reach the P-type substrate beneath. Then, by an anisotropic etching stop technique, in which etchant pass through the holes, a taper chamber is formed in the P-type substrate. Finally, an insulating material is applied to seal the holes, thus attaining the silicon pressure micro-sensing device that is able to sense pressure differences between two ends thereof.
Abstract:
A structure for reducing stress for vias and a fabricating method thereof are provided. One or more wires or vias in the thickness direction are enframed with the use of a stress block in a lattice structure to be isolated from being directly contacted with the major portion of insulating materials with a high coefficient of thermal expansion. Thus, the shear stress resulting from temperature loading can be blocked or absorbed by the stress block.
Abstract:
A structure for reducing stress for vias and a fabricating method thereof are provided. One or more wires or vias in the thickness direction are enframed with the use of a stress block in a lattice structure to be isolated from being directly contacted with the major portion of insulating materials with a high coefficient of thermal expansion. Thus, the shear stress resulting from temperature loading can be blocked or absorbed by the stress block.
Abstract:
A mold array process (MAP) for manufacturing a plurality of semiconductor packages is revealed. Firstly, a substrate strip including a plurality of substrate units arranged in an array within a molding area is provided. A plurality of chips are disposed on the substrate units. An encapsulant by molding is formed on the molding area of the substrate strip to continuously encapsulate the chips. During the molding process, an adjustable top mold is implemented where a cavity width between two opposing sidewalls inside a top mold chest can be adjusted to make the mold flow speeds at the center and at the side rails of the molding area the same.
Abstract:
A package structure with embedded electronic devices is provided. The package structure includes a substrate, a multi-layered circuit board, an adhesive film and at least an electronic device. The electronic device is disposed on the substrate. The electronic device is press-adhered to the multi-layered circuit board through the adhesive film and the composite bump thereon, so that the electronic device is embedded within the package structure and between the substrate and the circuit board. Due to the deformity of the composite bump, the electronic device is protected from being cracking in the pressing process.
Abstract:
A package structure with embedded electronic devices is provided. The package structure includes a substrate, a multi-layered circuit board, an adhesive film and at least an electronic device. The electronic device is disposed on the substrate. The electronic device is press-adhered to the multi-layered circuit board through the adhesive film and the composite bump thereon, so that the electronic device is embedded within the package structure and between the substrate and the circuit board. Due to the deformity of the composite bump, the electronic device is protected from being cracking in the pressing process.
Abstract:
A structure for protecting electronic package contacts and the method for manufacturing the same are provided. The protective layer is used to prevent stresses from being gathered within electronic contacts on the chip and the vias for rerouting so as to raise the reliability of the conductor trace line in the electronic package structure. The protecting layer is formed in the wafer-level manufacturing processes by coating, depositing, and printing. The method is suitable for all kinds of electronic package structures owing to its high compatibility.
Abstract:
A structure for reducing stress for vias and a fabricating method thereof are provided. One or more wires or vias in the thickness direction are enframed with the use of a stress block in a lattice structure to be isolated from being directly contacted with the major portion of insulating materials with a high coefficient of thermal expansion. Thus, the shear stress resulting from temperature loading can be blocked or absorbed by the stress block.