摘要:
Embodiments of the invention provide a method of forming a doped gallium arsenide based (GaAs) layer from a solution based precursor. The doped gallium arsenide based (GaAs) layer formed from the solution based precursor may assist solar cell devices to improve light absorption and conversion efficiency. In one embodiment, a method of forming a solar cell device includes forming a first layer with a first type of dopants doped therein over a surface of a substrate, forming a GaAs based layer on the first layer, and forming a second layer with a second type of dopants doped therein on the GaAs based layer.
摘要:
Provided are methods and apparatus for functionalizing a substrate surface used as the channel in a gate stack. Silicon, germanium and silicon germanium substrates surfaces are functionalized with one or more of sulfur and selenium by plasma processing.
摘要:
Embodiments of the invention provide a thin single crystalline silicon film solar cell and methods of forming the same. The method includes forming a thin single crystalline silicon layer on a silicon growth substrate, followed by forming front or rear solar cell structures on and/or in the thin single crystalline silicon film. The method also includes attaching the thin single crystalline silicon film to a mechanical carrier and then separating the growth substrate from the thin single crystalline silicon film along a cleavage plane formed between the growth substrate and the thin single crystalline silicon film. Front or rear solar cell structures are then formed on and/or in the thin single crystalline silicon film opposite the mechanical carrier to complete formation of the solar cell.
摘要:
Solar cells are provided with carbon nanotubes (CNTs) which are used: to define a micron/sub-micron geometry of the solar cells; and/or as charge transporters for efficiently removing charge carriers from the absorber layer to reduce the rate of electron-hole recombination in the absorber layer. A solar cell may comprise: a substrate; a multiplicity of areas of metal catalyst on the surface of the substrate; a multiplicity of carbon nanotube bundles formed on the multiplicity of areas of metal catalyst, each bundle including carbon nanotubes aligned roughly perpendicular to the surface of the substrate; and a photoactive solar cell layer formed over the carbon nanotube bundles and exposed surfaces of the substrate, wherein the photoactive solar cell layer is continuous over the carbon nanotube bundles and the exposed surfaces of the substrate. The photoactive solar cell layer may be comprised of amorphous silicon p/i/n thin films; although, concepts of the present invention are also applicable to solar cells with absorber layers of microcrystalline silicon, SiGe, carbon doped microcrystalline silicon, CIS, CIGS, CISSe and various p-type II-VI binary compounds and ternary and quaternary compounds.
摘要:
Methods for fabrication of copper delafossite materials include a low temperature sol-gel process for synthesizing CuBO2 powders, and a pulsed laser deposition (PLD) process for forming thin films of CuBO2, using targets made of the CuBO2 powders. The CuBO2 thin films are optically transparent p-type semiconductor oxide thin films. Devices with CuBO2 thin films include p-type transparent thin film transistors (TTFT) comprising thin film CuBO2 as a channel layer and thin film solar cells with CuBO2 p-layers. Solid state dye sensitized solar cells (SS-DSSC) comprising CuBO2 in various forms, including “core-shell” and “nano-couple” particles, and methods of manufacture, are also described.
摘要:
Embodiments of the invention generally provide a composition of silicon compounds and methods for using the silicon compounds to deposit a silicon-containing film. The processes employ introducing the silicon compound to a substrate surface and depositing a portion of the silicon compound, the silicon motif, as the silicon-containing film. The ligands are another portion of the silicon compound and are liberated as an in-situ etchant. The in-situ etchants supports the growth of selective silicon epitaxy. Silicon compounds include SiRX6, Si2RX6, Si2RX8, wherein X is independently hydrogen or halogen and R is carbon, silicon or germanium. Silicon compound also include compounds comprising three silicon atoms, fourth atom of carbon, silicon or germanium and atoms of hydrogen or halogen with at least one halogen, as well as, comprising four silicon atoms, fifth atom of carbon, silicon or germanium and atoms of hydrogen or halogen with at least one halogen.
摘要:
A method of preparing a clean substrate surface for blanket or selective epitaxial deposition of silicon-containing and/or germanium-containing films. In addition, a method of growing the silicon-containing and/or germanium-containing films, where both the substrate cleaning method and the film growth method are carried out at a temperature below 750° C., and typically at a temperature from about 700° C. to about 500° C. The cleaning method and the film growth method employ the use of radiation having a wavelength ranging from about 310 nm to about 120 nm in the processing volume in which the silicon-containing film is grown. Use of this radiation in combination with particular partial pressure ranges for the reactive cleaning or film-forming component species enable the substrate cleaning and epitaxial film growth at temperatures below those previously known in the industry.
摘要:
Embodiments of the invention provide a method of forming a group III-V material utilized in thin film transistor devices. In one embodiment, a gallium arsenide based (GaAs) layer with or without dopants formed from a solution based precursor may be utilized in thin film transistor devices. The gallium arsenide based (GaAs) layer formed from the solution based precursor may be incorporated in thin film transistor devices to improve device performance and device speed. In one embodiment, a thin film transistor structure includes a gate insulator layer disposed on a substrate, a GaAs based layer disposed over the gate insulator layer, and a source-drain metal electrode layer disposed adjacent to the GaAs based layer.
摘要:
Embodiments of the invention provide a method of forming a doped gallium arsenide based (GaAs) layer from a solution based precursor. The doped gallium arsenide based (GaAs) layer formed from the solution based precursor may assist solar cell devices to improve light absorption and conversion efficiency. In one embodiment, a method of forming a solar cell device includes forming a first layer with a first type of dopants doped therein over a surface of a substrate, forming a GaAs based layer on the first layer, and forming a second layer with a second type of dopants doped therein on the GaAs based layer.
摘要:
Embodiments of the invention generally provide a method for depositing films or layers using a UV source during a photoexcitation process. The films are deposited on a substrate and usually contain a material, such as silicon (e.g., epitaxy, crystalline, microcrystalline, polysilicon, or amorphous), silicon oxide, silicon nitride, silicon oxynitride, or other silicon-containing materials. The photoexcitation process may expose the substrate and/or gases to an energy beam or flux prior to, during, or subsequent a deposition process. Therefore, the photoexcitation process may be used to pre-treat or post-treat the substrate or material, to deposit the silicon-containing material, and to enhance chamber cleaning processes. Attributes of the method that are enhanced by the UV photoexcitation process include removing native oxides prior to deposition, removing volatiles from deposited films, increasing surface energy of the deposited films, increasing the excitation energy of precursors, reducing deposition time, and reducing deposition temperature.