摘要:
Embodiments of the invention provide a method of forming a doped gallium arsenide based (GaAs) layer from a solution based precursor. The doped gallium arsenide based (GaAs) layer formed from the solution based precursor may assist solar cell devices to improve light absorption and conversion efficiency. In one embodiment, a method of forming a solar cell device includes forming a first layer with a first type of dopants doped therein over a surface of a substrate, forming a GaAs based layer on the first layer, and forming a second layer with a second type of dopants doped therein on the GaAs based layer.
摘要:
Embodiments of the invention provide a method of forming a doped gallium arsenide based (GaAs) layer from a solution based precursor. The doped gallium arsenide based (GaAs) layer formed from the solution based precursor may assist solar cell devices to improve light absorption and conversion efficiency. In one embodiment, a method of forming a solar cell device includes forming a first layer with a first type of dopants doped therein over a surface of a substrate, forming a GaAs based layer on the first layer, and forming a second layer with a second type of dopants doped therein on the GaAs based layer.
摘要:
Embodiments of the invention provide a thin single crystalline silicon film solar cell and methods of forming the same. The method includes forming a thin single crystalline silicon layer on a silicon growth substrate, followed by forming front or rear solar cell structures on and/or in the thin single crystalline silicon film. The method also includes attaching the thin single crystalline silicon film to a mechanical carrier and then separating the growth substrate from the thin single crystalline silicon film along a cleavage plane formed between the growth substrate and the thin single crystalline silicon film. Front or rear solar cell structures are then formed on and/or in the thin single crystalline silicon film opposite the mechanical carrier to complete formation of the solar cell.
摘要:
Solar cells are provided with carbon nanotubes (CNTs) which are used: to define a micron/sub-micron geometry of the solar cells; and/or as charge transporters for efficiently removing charge carriers from the absorber layer to reduce the rate of electron-hole recombination in the absorber layer. A solar cell may comprise: a substrate; a multiplicity of areas of metal catalyst on the surface of the substrate; a multiplicity of carbon nanotube bundles formed on the multiplicity of areas of metal catalyst, each bundle including carbon nanotubes aligned roughly perpendicular to the surface of the substrate; and a photoactive solar cell layer formed over the carbon nanotube bundles and exposed surfaces of the substrate, wherein the photoactive solar cell layer is continuous over the carbon nanotube bundles and the exposed surfaces of the substrate. The photoactive solar cell layer may be comprised of amorphous silicon p/i/n thin films; although, concepts of the present invention are also applicable to solar cells with absorber layers of microcrystalline silicon, SiGe, carbon doped microcrystalline silicon, CIS, CIGS, CISSe and various p-type II-VI binary compounds and ternary and quaternary compounds.
摘要:
The present invention generally relates to electrochromic (EC) devices, such as used in electrochromic windows (ECWs), and their manufacture. The EC devices may comprise a transparent substrate; a first transparent conductive layer; a doped coloration layer, wherein the coloration layer dopants provide structural stability to the arrangement of atoms in the coloration layer; an electrolyte layer; a doped anode layer over said electrolyte layer, wherein the anode layer dopant provides increased electrically conductivity in the doped anode layer; and a second transparent conductive layer. A method of fabricating an electrochromic device may comprise depositing on a substrate, in sequence, a first transparent conductive layer, a doped coloration layer, an electrolyte layer, a doped anode layer, and a second transparent conductive layer, wherein at least one of the doped coloration layer, the electrolyte layer and the doped anode layer is sputter deposited using a combinatorial plasma deposition process.
摘要:
A readily manufacturable, high power, high energy, large area energy storage device is described. The energy storage device may use processes compatible with large area processing tools, such as large area coating systems and linear processing systems compatible with flexible thin film substrates. The energy storage devices may include batteries, super-capacitors and ultra-capacitors. An energy storage device may include a multiplicity of thin film cells formed on a single substrate, the multiplicity of cells being electrically connected in series, each one of the multiplicity of cells comprising: a current collector on the surface of the substrate; a first electrode on the current collector; a second electrode over the first electrode; and an electrolyte layer between the first electrode and the second electrode. Furthermore, an energy storage device may include a plurality of thin film cells formed on a single substrate, the plurality of cells being electrically connected in a network, the network including both parallel and serial electrical connections between individual cells of the plurality of cells.
摘要:
Solar cells are provided with carbon nanotubes (CNTs) which are used: to define a micron/sub-micron geometry of the solar cells; and/or as charge transporters for efficiently removing charge carriers from the absorber layer to reduce the rate of electron-hole recombination in the absorber layer. A solar cell may comprise: a substrate; a multiplicity of areas of metal catalyst on the surface of the substrate; a multiplicity of carbon nanotube bundles formed on the multiplicity of areas of metal catalyst, each bundle including carbon nanotubes aligned roughly perpendicular to the surface of the substrate; and a photoactive solar cell layer formed over the carbon nanotube bundles and exposed surfaces of the substrate, wherein the photoactive solar cell layer is continuous over the carbon nanotube bundles and the exposed surfaces of the substrate. The photoactive solar cell layer may be comprised of amorphous silicon p/i/n thin films; although, concepts of the present invention are also applicable to solar cells with absorber layers of microcrystalline silicon, SiGe, carbon doped microcrystalline silicon, CIS, CIGS, CISSe and various p-type II-VI binary compounds and ternary and quaternary compounds.
摘要:
The present invention generally relates to electrochromic (EC) devices, such as used in electrochromic windows (ECWs), and their manufacture. The EC devices may comprise a transparent substrate; a first transparent conductive layer; a doped coloration layer, wherein the coloration layer dopants provide structural stability to the arrangement of atoms in the coloration layer; an electrolyte layer; a doped anode layer over said electrolyte layer, wherein the anode layer dopant provides increased electrically conductivity in the doped anode layer; and a second transparent conductive layer. A method of fabricating an electrochromic device may comprise depositing on a substrate, in sequence, a first transparent conductive layer, a doped coloration layer, an electrolyte layer, a doped anode layer, and a second transparent conductive layer, wherein at least one of the doped coloration layer, the electrolyte layer and the doped anode layer is sputter deposited using a combinatorial plasma deposition process.
摘要:
Methods for fabrication of copper delafossite materials include a low temperature sol-gel process for synthesizing CuBO2 powders, and a pulsed laser deposition (PLD) process for forming thin films of CuBO2, using targets made of the CuBO2 powders. The CuBO2 thin films are optically transparent p-type semiconductor oxide thin films. Devices with CuBO2 thin films include p-type transparent thin film transistors (TTFT) comprising thin film CuBO2 as a channel layer and thin film solar cells with CuBO2 p-layers. Solid state dye sensitized solar cells (SS-DSSC) comprising CuBO2 in various forms, including “core-shell” and “nano-couple” particles, and methods of manufacture, are also described.
摘要:
Methods for fabrication of copper delafossite materials include a low temperature sol-gel process for synthesizing CuBO2 powders, and a pulsed laser deposition (PLD) process for forming thin films of CuBO2, using targets made of the CuBO2 powders. The CuBO2 thin films are optically transparent p-type semiconductor oxide thin films. Devices with CuBO2 thin films include p-type transparent thin film transistors (TTFT) comprising thin film CuBO2, as a channel layer and thin film solar cells with CuBO2 p-layers. Solid state dye sensitized solar cells (SS-DSSC) comprising CuBO2 in various forms, including “core-shell” and “nano-couple” particles, and methods of manufacture, are also described.