Abstract:
The present invention relates to ultrashort depsipeptides which are capable of self-assembling into hydrogels. One preferred embodiment is of Ac-ILVaGK-NH2, where a represents lactic acid. The invention also relates to the use of these depsipeptides in formulating hydrogels, co-gels or co-hydrogels, and pharmaceutical compositions or biomedical device or surgical implants or kits comprising these depsipeptides for various therapeutic applications such as regenerative medicine, tissue regeneration and tissue re-placement.
Abstract:
The present invention provides an amphiphilic linear peptide and/or peptoid as well as a hydrogel that includes the amphiphilic linear peptide/peptoid.
Abstract:
The present invention relates to composite hydrogels comprising at least one non-peptidic polymer and at least one peptide having the general formula: Z—(X)m—(Y)n—Z′p, wherein Z is an N-terminal protecting group; X is, at each occurrence, independently selected from an aliphatic amino acid, an aliphatic amino acid derivative and a glycine; Y is, at each occurrence, independently selected from a polar amino acid and a polar amino acid derivative; Z′ is a C-terminal protecting group; m is an integer selected from 2 to 6; n is selected from 1 or 2; and p is selected from 0 or 1. The present invention further relates to methods of producing the composite hydrogels, to uses of the composite hydrogels for the delivery of drugs and other bioactive agents/moieties, as an implant or injectable agent that facilitates tissue regeneration, and as a topical agent for wound healing. The present invention further relates to devices and pharmaceutical or cosmetic compositions comprising the composite hydrogels and to medical uses of the composite hydrogels.
Abstract:
The present invention relates to composite hydrogels comprising at least one non-peptidic polymer and at least one peptide having the general formula: Z—(X)m—(Y)n—Z′p, wherein Z is an N-terminal protecting group; X is, at each occurrence, independently selected from an aliphatic amino acid, an aliphatic amino acid derivative and a glycine; Y is, at each occurrence, independently selected from a polar amino acid and a polar amino acid derivative; Z′ is a C-terminal protecting group; m is an integer selected from 2 to 6; n is selected from 1 or 2; and p is selected from 0 or 1. The present invention further relates to methods of producing the composite hydrogels, to uses of the composite hydrogels for the delivery of drugs and other bioactive agents/moieties, as an implant or injectable agent that facilitates tissue regeneration, and as a topical agent for wound healing. The present invention further relates to devices and pharmaceutical or cosmetic compositions comprising the composite hydrogels and to medical uses of the composite hydrogels.
Abstract:
The present invention provides an amphiphilic linear peptide and/or peptoid as well as a hydrogel that includes the amphiphilic linear peptide/peptoid.
Abstract:
There is provided a self-assembly amphiphilic peptide having the formula (I): XYZ (I), wherein X is a polar moiety at the N-terminus; X and Z each independently has between 1 to 4 residues of aliphatic amino acids or analogs or derivatives thereof, and wherein the average degree of hydrophobicity of the residues in block Z is more than the average degree of hydrophobicity of the residues in block Y. Disclosed are compositions and hydrogel comprising the peptide thereof. Also disclosed are methods of treatment for tissue regeneration, wound healing and methods of culture of stem cells, tissues and organoids.
Abstract:
The present invention relates to the use of peptides, peptoids and/or peptidomimetics capable of self-assembling and forming a (nanofibrous) hydrogel in biofabrication. The present invention further relates to methods for preparing hydrogels and to methods for preparing continuous fibres and to methods for obtaining multi-cellular constructs with defined, precise geometrics. The present invention further relates to various uses of such hydrogels for obtaining mini-hydrogel arrays and 3D organoid structures or 3D macromolecular biological constructs.
Abstract:
The present invention relates to hydrophobic peptides and/or peptidomimetics capable of forming a (nanofibrous) hydrogel and hydrogels comprising said hydrophobic peptides and/or peptidomimetics and to various uses, such as in regenerative medicine, injectable therapies, delivery of bioactive moieties, wound healing, 2D and 3D synthetic cell culture substrate, biosensor development, biofunctionalized surfaces, and biofabrication.