摘要:
The present invention relates to a semiconductor light emitting device comprising a sapphire substrate 11; a u-GaN layer 12 that is formed on top of the substrate 11 and that comprises a plurality of concave portions 121 formed into band-like shapes with predetermined intervals therebetween; a regrown u-GaN layer 13 formed on the u-Ga layer 12; a layered structure that is formed on the u-GaN layer 13 comprises an n-GaN layer 15, an active layer 16, and a p-GaN layer 19; an n-type electrode 24 formed on the n-GaN layer 15 exposed by removing a potion of the layered structure; and a transparent p-type electrode 20 formed on the p-GaN layer 19, wherein the p-type electrode 20 is an emission detection surface, and an air layer S is formed between the bottom surface of the u-GaN layer 13 and the concave portions 121.
摘要:
The present invention relates to a semiconductor light emitting device comprising a sapphire substrate 11; a u-GaN layer 12 that is formed on top of the substrate 11 and that comprises a plurality of concave portions 121 formed into band-like shapes with predetermined intervals therebetween; a regrown u-GaN layer 13 formed on the u-Ga layer 12; a layered structure that is formed on the u-GaN layer 13 comprises an n-GaN layer 15, an active layer 16, and a p-GaN layer 19; an n-type electrode 24 formed on the n-GaN layer 15 exposed by removing a potion of the layered structure; and a transparent p-type electrode 20 formed on the p-GaN layer 19, wherein the p-type electrode 20 is an emission detection surface, and an air layer S is formed between the bottom surface of the u-GaN layer 13 and the concave portions 121.
摘要:
The present invention relates to a semiconductor light emitting device comprising a sapphire substrate 11; a u-GaN layer 12 that is formed on top of the substrate 11 and that comprises a plurality of concave portions 121 formed into band-like shapes with predetermined intervals therebetween; a regrown u-GaN layer 13 formed on the u-Ga layer 12; a layered structure that is formed on the u-GaN layer 13 comprises an n-GaN layer 15, an active layer 16, and a p-GaN layer 19; an n-type electrode 24 formed on the n-GaN layer 15 exposed by removing a potion of the layered structure; and a transparent p-type electrode 20 formed on the p-GaN layer 19, wherein the p-type electrode 20 is an emission detection surface, and an air layer S is formed between the bottom surface of the u-GaN layer 13 and the concave portions 121.
摘要:
The method for fabricating a semiconductor includes the steps of: (1) growing a first semiconductor layer made of AlxGa1−xN (0≦x≦1) on a substrate at a temperature higher than room temperature; and (2) growing a second semiconductor layer made of AluGavInwN (0
摘要翻译:制造半导体的方法包括以下步骤:(1)在高于室温的温度下,在衬底上生长由Al x Ga 1-x N(0 <= x <= 1)制成的第一半导体层; 和(2)在第一半导体层上生长由AluGavInwN(0
摘要:
The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
摘要:
A semiconductor light-emitting device with a double hetero structure, including: an active layer made of Ga.sub.1-x In.sub.x N (0.ltoreq.x.ltoreq.0.3) doped with a p-type impurity and an n-type impurity; and first and second cladding layers provided so as to sandwich the active layer.
摘要:
A semiconductor light-emitting device with a double hetero structure, including: an active layer made of Ga.sub.1-x In.sub.x N (0.ltoreq.x.ltoreq.0.3) doped with a p-type impurity and an n-type impurity; and first and second cladding layers provided so as to sandwich the active layer.
摘要:
The method for fabricating a nitride semiconductor of the present invention includes the steps of: (1) growing a first semiconductor layer made of a first group III nitride over a substrate by supplying a first group III source and a group V source containing nitrogen; and (2) growing a second semiconductor layer made of a second group III nitride on the first semiconductor layer by supplying a second group III source and a group V source containing nitrogen. At least one of the steps (1) and (2) includes the step of supplying a p-type dopant over the substrate, and an area near the interface between the first semiconductor layer and the second semiconductor layer is grown so that the density of the p-type dopant locally increases.
摘要:
The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
摘要:
The method for fabricating a nitride semiconductor of the present invention includes the steps of: (1) growing a first semiconductor layer made of a first group III nitride over a substrate by supplying a first group III source and a group V source containing nitrogen; and (2) growing a second semiconductor layer made of a second group III nitride on the first semiconductor layer by supplying a second group III source and a group V source containing nitrogen. At least one of the steps (1) and (2) includes the step of supplying a p-type dopant over the substrate, and an area near the interface between the first semiconductor layer and the second semiconductor layer is grown so that the density of the p-type dopant locally increases.