摘要:
A guard ring is formed in a semiconductor region that is part of a Schottky junction or Schottky diode. The guard ring is formed by ion implantation into the semiconductor contact layer without completely annealing the semiconductor contact layer to form a high resistance region. The guard ring may be located at the edge of the layer or, alternatively, at a distance away from the edge of the layer. A Schottky metal contact is formed atop the layer, and the edges of the Schottky contact are disposed atop the guard ring.
摘要:
A repeatable and uniform low doped layer is formed using modulation doping by forming alternating sub-layers of doped and undoped nitride semiconductor material atop another layer. A Schottky diode is formed of such a low doped nitride semiconductor layer disposed atop a much more highly doped nitride semiconductor layer. The resulting device has both a low on-resistance when the device is forward biased and a high breakdown voltage when the device is reverse biased.
摘要:
A lateral conduction Schottky diode includes multiple mesa regions upon which Schottky contacts are formed and which are at least separated by ohmic contacts to reduce the current path length and reduce current crowding in the Schottky contact, thereby reducing the forward resistance of a device. The multiple mesas may be isolated from one another and have sizes and shapes optimized for reducing the forward resistance. Alternatively, some of the mesas may be finger-shaped and intersect with a central mesa or a bridge mesa, and some or all of the ohmic contacts are interdigitated with the finger-shaped mesas. The dimensions of the finger-shaped mesas and the perimeter of the intersecting structure may be optimized to reduce the forward resistance. The Schottky diodes may be mounted to a submount in a flip chip arrangement that further reduces the forward voltage as well as improves power dissertation and reduces heat generation.
摘要:
A nitride semiconductor is grown on a silicon substrate by depositing a few mono-layers of aluminum to protect the silicon substrate from ammonia used during the growth process, and then forming a nucleation layer from aluminum nitride and a buffer structure including multiple superlattices of AlRGa(1-R)N semiconductors having different compositions and an intermediate layer of GaN or other Ga-rich nitride semiconductor. The resulting structure has superior crystal quality. The silicon substrate used in epitaxial growth is removed before completion of the device so as to provide superior electrical properties in devices such as high-electron mobility transistors.
摘要:
A gallium nitride based semiconductor Schottky diode fabricated from a n+ doped GaN layer having a thickness between one and six microns disposed on a sapphire substrate; an n− doped GaN layer having a thickness greater than one micron disposed on said n+ GaN layer patterned into a plurality of elongated fingers and a metal layer disposed on the n− doped GaN layer and forming a Schottky junction therewith. The layer thicknesses and the length and width of the elongated fingers are optimized to achieve a device with breakdown voltage of greater than 500 volts, current capacity in excess of one ampere, and a forward voltage of less than three volts.
摘要:
A packaged semiconductor device, in particular a gallium nitride semiconductor structure including a lower semiconductor layer and an upper semiconductor layer disposed over a portion of the lower semiconductor layer. The semiconductor structure includes a plurality of mesas projecting upwardly from the lower layer, each of the mesas including a portion of the upper layer and defining an upper contact surface separated form adjacent mesas by a portion of the lower layer surface. The device further includes a die mounting support, wherein the bottom surface of the die is attached to the top surface of the die mounting support; and a plurality of spaced external conductors extending from the support, at least once of said spaced external conductors having a bond wire post at one end thereof; with a bonding wire extending between the bond wire post and a contact region to the top surface of the plurality of mesas.
摘要:
An LED device (90) includes: an epitaxial structure (100) having a plurality of layers of semiconductor material and forming an active light-generating region (120) which generates light in response to electrical power being supplied to the LED device (90); and, a substrate (200) that is substantially transparent in a wavelength range corresponding to the light generated by the active light-generating region (120). The substrate has first and second opposing end faces (202, 206) and a plurality of side walls (210) extending therebetween, including a first side wall having a first portion thereof that defines a first surface (212, 214, 216, 218) which is not substantially normal to the first face (202) of the substrate (200). The epitaxial structure (100) is disposed on the first face (202) of the substrate (200).
摘要:
In a light emitting package fabrication process, a plurality of light emitting chips (10) are attached on a sub-mount wafer (14). The attached light emitting chips (10) are encapsulated. Fracture-initiating trenches (30, 32) are laser cut into the sub-mount wafer (14) between the attached light emitting chips (10) using a laser. The sub-mount wafer (14) is fractured along the fracture initiating trenches (30, 32).
摘要:
In a light emitting package fabrication process, a plurality of light emitting chips (10) are attached on a sub-mount wafer (14). The attached light emitting chips (10) are encapsulated. Fracture-initiating trenches (30, 32) are laser cut into the sub-mount wafer (14) between the attached light emitting chips (10) using a laser. The sub-mount wafer (14) is fractured along the fracture initiating trenches (30, 32).
摘要:
Light emitting diodes are provided with electrode and pad structures that facilitate current spreading and heat sinking. A light emitting diode may be formed as a die with a stacked structure having a first region and a mesa projecting from a surface of the first region. A first electrode may substantially cover the mesa and have a plurality of pads disposed thereon maximizing a contact area in relation to the first electrode. A second electrode may be disposed as a trace on the surface of the first region, the trace having a spiral, segmented/interdigitated, loop or pattern. Optionally, the trace includes corner spikes projecting outwardly toward edges of the first electrode.