摘要:
Described are doped TaN films, as well as methods for providing the doped TaN films. Doping TaN films with Ru, Cu, Co, Mn, Al, Mg, Cr, Nb, Ti and/or V allows for enhanced copper barrier properties of the TaN films. Also described are methods of providing films with a first layer comprising doped TaN and a second layer comprising one or more of Ru and Co, with optional doping of the second layer.
摘要:
Described are methods of forming a semiconductor device. Certain methods comprises depositing a film comprising manganese nitride over a dielectric; depositing a copper seed layer over the film; and depositing a copper fill layer over the copper seed layer. Also described are semiconductor devices. Certain semiconductor devices comprise a low-k dielectric layer; a manganese nitride layer overlying the low-k dielectric layer; a seed layer selected from a copper seed layer or electrochemical deposition seed layer overlying the manganese nitride layer; a copper layer overlying the copper seed layer.
摘要:
Embodiments of the invention generally provide methods for depositing metal-containing materials and compositions thereof. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. In one embodiment, a method for processing a substrate is provided which includes depositing a dielectric material having a dielectric constant greater than 10, forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.
摘要:
Embodiments of the invention provide a method for treating the inner surfaces of a processing chamber and depositing a material on a during a vapor deposition process, such as atomic layer deposition (ALD) or by chemical vapor deposition (CVD). In one embodiment, the inner surfaces of the processing chamber and the substrate may be exposed to a reagent, such as a hydrogenated ligand compound during a pretreatment process. The hydrogenated ligand compound may be the same ligand as a free ligand formed from the metal-organic precursor used during the subsequent deposition process. The free ligand is usually formed by hydrogenation or thermolysis during the deposition process. In one example, the processing chamber and substrate are exposed to an alkylamine compound (e.g., dimethylamine) during the pretreatment process prior to conducting the vapor deposition process which utilizes a metal-organic chemical precursor having alkylamino ligands, such as pentakis(dimethylamino) tantalum (PDMAT).
摘要:
Embodiments of the invention provide a method for treating the inner surfaces of a processing chamber and depositing a material on a during a vapor deposition process, such as atomic layer deposition (ALD) or by chemical vapor deposition (CVD). In one embodiment, the inner surfaces of the processing chamber and the substrate may be exposed to a reagent, such as a hydrogenated ligand compound during a pretreatment process. The hydrogenated ligand compound may be the same ligand as a free ligand formed from the metal-organic precursor used during the subsequent deposition process. The free ligand is usually formed by hydrogenation or thermolysis during the deposition process. In one example, the processing chamber and substrate are exposed to an alkylamine compound (e.g., dimethylamine) during the pretreatment process prior to conducting the vapor deposition process which utilizes a metal-organic chemical precursor having alkylamino ligands, such as pentakis(dimethylamino) tantalum (PDMAT).
摘要:
Provided are gas distribution apparatus with a delivery channel having an inlet end, an outlet end and a plurality of apertures spaced along the length. The inlet end is connectable to an inlet gas source and the outlet end is connectible with a vacuum source. Also provided are gas distribution apparatus with spiral delivery channels, intertwined spiral delivery channels, splitting delivery channels, merging delivery channels and shaped delivery channels in which an inlet end and outlet end are configured for rapid exchange of gas within the delivery channels.
摘要:
Embodiments of the invention generally provide methods for depositing metal-containing materials and compositions thereof. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. In one embodiment, a method for processing a substrate is provided which includes depositing a dielectric material having a dielectric constant greater than 10, forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.
摘要:
A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the apparatus comprises a support assembly. In one embodiment, the support assembly includes a shaft coupled to a disk-shaped body. The disk-shaped body includes an upper surface, a lower surface and a cylindrical outer surface. A flange extends radially outward from the cylindrical outer surface. A fluid channel is formed in the disk-shaped body and is coupled to the heat transfer fluid conduit of the shaft. A plurality of grooves formed in the upper surface are coupled by a hole to the vacuum conduit of the shaft. A gas conduit formed through the disk-shaped body couples the gas conduit of the shaft to the cylindrical outer surface of the disk-shaped body.
摘要:
Embodiments of the invention provide methods for depositing a material on a substrate within a processing chamber during a vapor deposition process, such as an atomic layer deposition (ALD) process. In one embodiment, a method is provided which includes sequentially exposing the substrate to a first precursor gas and at least a second precursor gas while depositing a material on the substrate during the ALD process, and continuously or periodically exposing the substrate to a treatment gas prior to and/or during the ALD process. The deposition rate of the material being deposited may be controlled by varying the amount of treatment gas exposed to the substrate. In one example, tantalum nitride is deposited on the substrate and the alkylamino metal precursor gas contains a tantalum precursor, such as pentakis(dimethylamino) tantalum (PDMAT), the second precursor gas contains a nitrogen precursor, such as ammonia, and the treatment gas contains dimethylamine (DMA).
摘要:
Embodiments provide methods for treating a metal silicide contact which includes positioning a substrate having an oxide layer disposed on a metal silicide contact surface within a processing chamber, cleaning the metal silicide contact surface to remove the oxide layer while forming a cleaned silicide contact surface during a cleaning process, and exposing the cleaned silicide contact surface to a silicon-containing compound to form a recovered silicide contact surface during a regeneration process. In some examples, the cleaning of the metal silicide contact surface includes cooling the substrate to an initial temperature of less than 65° C., forming reactive species from a gas mixture of ammonia and nitrogen trifluoride by igniting a plasma, exposing the oxide layer to the reactive species to form a thin film, and heating the substrate to about 100° C. or greater to remove the thin film from the substrate while forming the cleaned silicide contact surface.