摘要:
An integrated circuit device (10) with a bonding surface (12) directly over its active circuitry, and a method of making such integrated circuits (FIGS. 2A 2E). To make the bonding surface (12), a wafer (20) is provided with vias (24) to its metallization layer (21) and then coated with a seed metal layer (25). A plating pattern (26) is formed on the wafer (20), exposing portions of the seed metal layer (25) and blocking the rest of the seed metal layer (25). These exposed portions are plated with successive metal layers (27, 28, 29), thereby forming a bonding surface (12) having a number of layered stacks (200) that fill the vias (24). The plating pattern and the nonplated portions of the seed metal layer (25) are then removed.
摘要:
An integrated circuit device (10) with a bonding surface (12) directly over its active circuitry, and a method of making such integrated circuits (FIGS. 2A-2E). To make the bonding surface (12), a wafer (20) is provided with vias (24) to its metallization layer (21) and then coated with a seed metal layer (25). A plating pattern (26) is formed on the wafer (20), exposing portions of the seed metal layer (25) and blocking the rest of the seed metal layer (25). These exposed portions are plated with successive metal layers (27, 28, 29), thereby forming a bonding surface (12) having a number of layered stacks (200) that fill the vias (24). The plating pattern and the nonplated portions of the seed metal layer (25) are then removed.
摘要:
A thick layer of copper is formed on the outside the protective overcoat (PO) which protects an integrated circuit, and forms both an inductor and the upper electrode of a capacitor. Placing this layer outside the PO greatly reduces parasitic capacitances with the substrate in the devices.
摘要:
A thick layer of copper is formed on the outside the protective overcoat (PO) which protects an integrated circuit, and forms both an inductor and the upper electrode of a capacitor. Placing this layer outside the PO greatly reduces parasitic capacitances with the substrate in the devices.
摘要:
A method of fabricating a semiconductor device containing a HVDMOS transistor and a LVDMOS transistor and the device which includes providing a region of semiconductor material of a first conductivity type and forming a high voltage DMOS transistor disposed in the region. A relatively low voltage DMOS transistor is also disposed in that region and electrically isolated from the high voltage DMOS transistor. The low voltage DMOS transistor has spaced apart source and drain regions disposed in the region of semiconductor material and a back gate region of the first conductivity type disposed in the region of semiconductor material between the source and drain regions. The back gate region is electrically coupled to the region of semiconductor material. The region of semiconductor material includes a surface, the source, drain and back gate regions extending to that surface. A well of second conductivity type opposite to the first conductivity type is provided in the region of semiconductor material and the high voltage DMOS transistor is disposed in that well. Optionally, one only of the source or drain regions of the low voltage DMOS transistor is disposed in the well. Also, optionally, a region of second conductivity type opposite to the first conductivity type can be provided between the back gate region and the drain region which is less highly doped than the drain region.
摘要:
A method for making an EEPROM (10) in a semiconductor substrate (40) and EEPROM made according to the method includes forming a gate dielectric (38), such as oxide, nitride, multilayer dielectric, or the like, on a surface of the substrate (40) and forming a polysilicon floating gate (19) on the gate dielectric (38). A control gate (25) is formed at least partially overlying the floating gate (19), and a thermal oxide layer (56) is formed on the floating gate (19) in regions that are not covered by the control gate. Thus, the thermal oxide layer (56) encases any regions of the floating gate (19) uncovered by the control gate (25) and serves as a high quality dielectric to isolate the floating gate (19) from charge loss and other deleterious effects. Then, source and drain regions (21,27) are formed in the substrate (40).
摘要:
A semiconductor device having a p type polysilicon resistor (56) with a moderate sheet resistance and low temperature coefficient of resistance is formed by a double-level polysilicon process. The process also produces n and p-channel transistors (44, 50), a capacitor having upper and lower n type polysilicon capacitor plates (36, 26), an n type polysilicon resistor (32) having a high sheet resistance, and an n type resistor (34) having a low sheet resistance. The p type doping used to form the source/drain regions (48) of p-channel transistor (50) counterdopes n type second level polysilicon to form p type polysilicon resistor (56) without effecting capacitor plates (36, 26) or the n type resistors (32, 34).
摘要:
An integrated circuit having PMOS, NMOS and NPN transistors is described for applications in which both digital and analog circuits are required. The integrated circuit is designed to allow standard CMOS cells to be used in the integrated circuit without redesign. A P+ substrate (48) is provided upon which a first P- epitaxy layer (46) is formed. N+ DUF regions (50,52) are provided for the PMOS and NPN transistors, respectively. The base region (68) is formed in an Nwell (58) by implantation and diffusion. Before diffusion, a nitride layer (70) is formed over the base (68) to provided an inert annealing thereof. The base diffusion and collector diffusion occurs before the CMOS channel stop and source/drain diffusions in order to prevent altering diffusion times for the MOS transistors.
摘要:
A method for fabricating a self-aligned DMOS transistor is provided. The method includes forming a passivation layer (18, 68) on an oxide layer (16, 66) of a substrate (12, 56). The oxide layer (16, 66) is then removed from the surface of the substrate (12, 56) where it is exposed through the passivation layer (18, 68). A reduced surface field region (36, 74) is then formed where the surface of the substrate (12, 56) is exposed through the passivation layer (18, 68). An oxide layer (38, 80) is then formed on the reduced surface field region (36, 74).
摘要:
A semiconductor device having a p type polysilicon resistor (56) with a moderate sheet resistance and low temperature coefficient of resistance is formed by a double-level polysilicon process. The process also produces n and p-channel transistors (44, 50), a capacitor having upper and lower n type polysilicon capacitor plates (36, 26), an n type polysilicon resistor (32) having a high sheet resistance, and an n type resistor (34) having a low sheet resistance. The p type doping used to form the source/drain regions (48) of p-channel transistor (50) counterdopes n type second level polysilicon to form p type polysilicon resistor (56) without effecting capacitor plates (36, 26) or the n type resistors (32, 34).