摘要:
An electrically programmable read only memory assembly having cells arranged at the intersections of bit lines (BL1) and word lines (WL1, WL2), wherein each cell is formed of a bipolar transistor provided with a base region (70) and an emitter region (71) covered with a dielectric layer (2) made of an oxide or titanate of a transition metal. The cell in this condition represents a binary 0 information bit. The application of an appropriate voltage of approximately 4 volts to the pads of this cell through its corresponding bit line (BL1) and word line (WL2) causes the dielectric layer to break down and places the bit line in ohmic contact with the emitter, which sets the cell in its second condition representing a binary "1" information bit.
摘要:
The present invention relates to a family of new GaAs MESFET logic circuits including push pull output buffers, which exhibits very strong output driving capability and very low power consumption at fast switching speeds. A 3 way OR/NOR circuit of this invention includes a standard differential amplifier, the first branch of which is controlled by logic input signals. The second branch includes a current switch controlled by a reference voltage. The differential amplifier provides first and second output signals simultaneously and complementary each other. The circuit further includes two push pull output buffers. The first output buffer comprises an active pull up device connected in series with an active pull down device, and the first circuit output signal is available at their common node or at the output terminal. The active pull up device is controlled by a first output signal of the differential amplifier, and the active pull down device is preferably controlled by the second output signal through an intermediate source follower buffer. The second output buffer is of similar structure. The depicted circuit is of the dual phase type. However, if only one phase of the circuit output signal is needed, the output buffer and the intermediate buffer can be eliminated. The number of devices can be even further reduced by eliminating the other remaining intermediate buffer.
摘要:
A multi emitter multi input BICMOS NAND circuit (30) is provided wherein an output node OUT connected to an output terminal (33) is coupled between pull up (31) and pull down (32) blocks. According to one embodiment of the present invention, the pull up block (32) is comprised of a plurality of identical basic cells, each comprised of a CMOS inverter (C31, C32) driving an NPN pull up transistor (T31, T32) mounted as an emitter follower. Logic signals (A31, A32) are applied on the inputs of the inverters (C31, C32), and the inverted signal (A31, A32) is available at the emitter of the emitter follower which corresponds to the output of the cell. All outputs are tied altogether to perform an OR function and are connected to said output terminal (33) to have a multi emitter like circuit. The pull down block (32) in this embodiment is comprised of 2 FETs (F31, F32) serially connected between said output node OUT and a discharge device such as a feedback NFET (Z) the gate of which is connected to said output node OUT. These 2 FETs are for driving a NPN pull down transistor (T), the collector of which is also connected to the output node OUT. The invention includes a number of other embodiments including a feedback inverter embodiment, a parasitic node discharge embodiment, and a BIFET latch embodiment.
摘要:
A true/complement generator for generating the complement and true value of weighted address bits, preventing an address decoder from selecting several lines at the same time. It comprises two circuits (1) and (2), the first one providing the true value (.phi.), the second one providing the complement (.phi.) thereof. The means provided for preventing multiple selections from occurring, comprise in the first circuit, a transistor (T11-1) for delaying the rising edge of (.phi.) as long as it is maintained on by the level provided by resistors R11-1 and R10-2 from output .phi.. Transistor T11-2 in the second circuit prevents .phi. from going high as long as it is maintained on by the level provided by R10-1, R11-2 from .phi..
摘要:
The present invention relates to fast complementary emitter follower drivers/buffers to be used in either a CMOS or pure complementary bipolar environment. The output driver (22) comprises top NPN and bottom PNP output transistors (T1, T2) with a common output node (N) connected therebetween. A terminal (15) is connected to the said output node (N) where the output signal (VOUT) is available. The pair of bipolar output transistors is biased between the first and second supply voltages (VH, GND). The output driver is provided with a voltage translator circuit (S) connected between the base nodes (B1, B2) of the output transistors (T1, T2). Logic signals (IN1, IN2), supplied by a preceding driving circuit (21), are applied to said base nodes. According to the invention, the voltage translator circuit (S) comprises two diodes (D1, D2) connected in series, preferably implemented with a main bipolar transistor having a junction shorted by a diode connected transistor to form a Darlington-like configuration. As a result, the voltage shift VS between the base nodes is selected to have the said output transistors operating at an operating point which ensures minimum delay and power consumption. In a typical bipolar technology, VS is made to be approximately equal to 1.5V. Additional features comprise the connection of a capacitor (C) between the base nodes and resistances (R1, R2) to the base nodes. The preceding driving circuit may be a CMOS logic gate or an ECL logic circuit.
摘要:
In the transmitting chip, the bits are serialized and applied to a coding circuit in which bit stream (D) and its complement (D) are transformed into two signals (PH1 and PH2) under the control of a saw-tooth clock signal CK'. Signals (PH1 and PH2) are sent to the receiving chip, wherein they are applied to a decoding circuit which generates two signals (DJ) and (DK) representative of the data bits and a recovered clock signal CLK. The three signals (DJ, DK and CLK) as well as a frame signal (F) are used by a converting and demultiplexing circuit for assembling bytes of parallel data bits.
摘要:
A word line selection circuit includes a conventional Schottky diode decoder and a driver transistor which is connected to a word line. A word line is selected when the transistor is conductive and all associated diodes of the decoder are off. The base current of the driver transistor is defined by a control transistor whose conductivity is opposite to that of the driver transistor and which applies the selection current to the base of the driver transistor. A regulating transistor forms a current mirror with the control transistor to regulate the selection current. A compensation circuit associated with the regulating transistor modulates the collector current of the regulating transistor as a function of the driver transistor factor.
摘要:
A vertical isolated-collector PNP transistor structure (58) comprises a P+ region (45), a N region (44) and a P- well region (46) which form the emitter, the base and the collector, respectively. The P- well region is enclosed in a N type pocket comprised of a N+ buried layer (48) and a N reach-through region (47) in contact therewith. The contact regions (46-1, 47-1) to the P- well region (46) and to the N reach-through region (47) are shorted to define a common collector contact (59). In addition, the thickness W of the P- well region (46) is so minimized to allow transistor action of the parasitic NPN transistor formed by N PNP base region (44), P- well region (46) and the N+ buried layer, (48) respectively as the collector, the base and the emitter of said PNP transistor. The PNP transistor structure (67) may be combined with a conventional NPN transistor structure (61).
摘要:
The base circuit comprises a self-referenced preamplifier (31) of the differential type connected between first and second supply voltages and a push-pull output buffer stage connected between second and third supply voltages. The push-pull output buffer stage comprises a pull-up transistor and a pull-down transistor connected in series with the circuit output node coupled therebetween. These transistors are driven by complementary and substantially simultaneous signals S and S supplied by the preamplifier. Both branches of the preamplifier are tied at a first output node (M). The first branch comprises a logic block performing the desired logic function of the base circuit that is connected through a load rsistor to the second supply voltage. The logic block consists of three parallel-connected input NPN transistors, whose emitters are coupled together at the first output node for NOR operation. The second branch is comprised of a biasing/coupling block connected to the second supply voltage and coupled to the first output node and to the base (B) node of the pull-down transistor. This block ensures both the appropriate polarization of the nodes in DC without the need of external reference voltage generators and a low impedance path for fast signal transmission of the output signal from node M to node B in AC, when input transistors of the logic block are ON. and base nodes. An anti-saturation block (AB), consisting typically of a Schottky Barrier Diode (SBD), is useful to prevent saturation of the pull down transistor (TDN) to further speed up the circuit.
摘要:
According to the present invention, a CMOS interface circuit (C2) similar to a latch made by two CMOS cross coupled inverters (INV1, INV2) is placed directly on the output node (14) of conventional BICMOS logic circuit (11) operating alone in a partial swing mode. This latch is made of four FETs P5, P6, N8, N9 cross-coupled in a conventional way with the feedback loop connected to said output node (14). The partial voltage swing (VBE to VH-VBE) naturally given by the output bipolar transistors (T1, T2) mounted in a push pull configuration is reinforced to full swing (GND to VH) by the latch at the end of each transition. The state of the output node if forced by the latch because of the high driving capability due to the presence of said output bipolar transistors (T1, T2). As a result, the improved BICMOS logic circuit (D2) has an output signal (S) that ranges within the desired full swing voltage at the output terminal (15). It is a characteristic of this embodiment that the structure of CMOS interface (C2) is always independent of the logic function implemented in the conventional BICMOS logic circuit (11). More generally, the CMOS interface circuit may have various physical implementations, however, it is always comprised of CMOS FETs and it becomes active at least in one of the GND to VBE or (VH-BE) to VH range.