Nonlinerar optical device structure with compound semiconductor having
graded chemical composition
    1.
    发明授权
    Nonlinerar optical device structure with compound semiconductor having graded chemical composition 失效
    具有分级化学成分的化合物半导体的非线性光学器件结构

    公开(公告)号:US4999485A

    公开(公告)日:1991-03-12

    申请号:US533999

    申请日:1990-06-04

    IPC分类号: G02F1/017 G02F1/355

    摘要: A nonlinear optical device structure is formed by a compound semiconductor having a graded chemical composition such that the average drift velocity of electrons is in the same direction as, but of greater magnitude than, that of holes. In this way, when a pump optical beam (control beam) is flashed (as by a picosecond pulse) upon the structure, electron-hole pairs are created with a resulting temporary spatial separation between the holes and the electron--whereby an electric dipole moment is temporarily induced in the structure. In turn, this dipole moment temporarily modifies either the birefringence or absorption property, or both, with respect to a controlled beam--whereby the polarization, phase, or intensity, of the controlled beam can be modified by the control beam. After the electrons and holes drift to positions which extinguish the dipole the structure is ready for a repeat performance.

    摘要翻译: 非线性光学器件结构由具有分级化学成分的化合物半导体形成,使得电子的平均漂移速度与孔的方向相同但大于其值。 以这种方式,当泵结构的光束(控制光束)通过皮秒脉冲闪光时,电子 - 空穴对产生空穴和电子之间的临时空间分隔,由此电偶极矩 在结构中暂时诱导。 反过来,这个偶极矩相对于被控制的光束临时修改双折射或吸收特性或二者,由此受控束的偏振,相位或强度可以被控制光束修改。 在电子和空穴漂移到熄灭偶极子的位置之后,该结构准备好重复执行。

    QUANTUM CASCADE LASER
    3.
    发明申请
    QUANTUM CASCADE LASER 有权
    量子CASCADE激光

    公开(公告)号:US20090213890A1

    公开(公告)日:2009-08-27

    申请号:US12395576

    申请日:2009-02-27

    IPC分类号: H01S5/343

    CPC分类号: H01S5/3402 B82Y20/00

    摘要: A quantum cascade laser utilizing non-resonant extraction design having a multilayered semiconductor with a single type of carrier; at least two final levels (1 and 1′) for a transition down from level 2; an energy spacing E21 greater than ELO; an energy spacing E31 of about 100 meV; and an energy spacing E32 about equal to ELO. The carrier wave function for level 1 overlaps with the carrier wave function for level 2. Likewise, the carrier wave function for level 1′ overlaps with the carrier wave function for level 2. In a second version, the basic design also has an energy spacing E54 of about 90 meV, and levels 1 and 1′ do not have to be spatially close to each other, provided that level 2 has significant overlap with both these levels. In a third version, there are at least three final levels (1, 1′, and 1″) for a transition down from level 2. Each of the levels 1, 1′, and 1″ has a non-uniform squared wave function distribution.

    摘要翻译: 利用非谐振提取设计的量子级联激光器具有具有单一载体的多层半导体; 从第2级向下转换的至少两个最终级别(1和1'); 能量间距E21大于ELO; 约100meV的能量间隔E31; 以及大约等于ELO的能量间隔E32。 等级1的载波函数与级2的载波功能重叠。等级1的载波函数与级别2的载波功能重叠。在第二版本中,基本设计还具有能量间隔 E54大约90 meV,1级和1级不必在空间上相互接近,只要等级2与这两个级别都有重大的重叠。 在第三版本中,从级别2向下转换至少有三个最终级别(1,1'和1“)。级别1,1'和1”中的每一个具有不均匀的平方 波函数分布。

    Optical amplifier for quantum cascade laser
    4.
    发明授权
    Optical amplifier for quantum cascade laser 有权
    用于量子级联激光器的光放大器

    公开(公告)号:US06836499B2

    公开(公告)日:2004-12-28

    申请号:US10155562

    申请日:2002-05-24

    IPC分类号: H01S500

    摘要: Techniques for amplifying light produced by a quantum cascade laser are described. An assembly according to the present invention includes an optical amplifier having an optical input and an optical output. The optical output has an area significantly greater than that of the optical output and the geometry of the amplifier is such that the amplifier widens from the optical input to the optical output. The optical amplifier is formed of a layered waveguide structure which achieves quantum confinement of electrons and photons within the active region. A distributed feedback laser is suitably coupled to the optical amplifier at the optical input of the amplifier. The widening of the amplifier makes available a large number of electrons, so that the amplifier is able to produce many photons resulting from stimulated transitions caused by introduction of light to the optical input of the amplifier, even if the great majority of the transitions occur nonradiatively.

    摘要翻译: 描述用于放大由量子级联激光器产生的光的技术。 根据本发明的组件包括具有光输入和光输出的光放大器。 光输出具有明显大于光输出的面积,并且放大器的几何形状使得放大器从光输入增宽到光输出。 光放大器由层状波导结构形成,其在有源区内实现电子和光子的量子限制。 分布式反馈激光器适当地耦合到放大器的光输入处的光放大器。 放大器的加宽使得可以获得大量的电子,使得放大器能够产生由于通过向放大器的光输入引入光引起的受激变换而产生的许多光子,即使绝大多数的跃迁是非辐射的 。

    Engineering the gain/loss profile of intersubband optical devices having heterogeneous cascades
    5.
    发明授权
    Engineering the gain/loss profile of intersubband optical devices having heterogeneous cascades 有权
    设计具有异质级联的子带间光学器件的增益/损耗曲线

    公开(公告)号:US06728282B2

    公开(公告)日:2004-04-27

    申请号:US09883542

    申请日:2001-06-18

    IPC分类号: H01S500

    摘要: An optical device includes a stack of at least two different intersubband (ISB) optical sub-devices in which the gain/loss profiles of the individual ISB sub-devices are mutually adapted, or engineered, so as to generate a predetermined overall function for the combination. We define this combination device as being heterogeneous since not all of the individual ISB sub-devices are identical to one another. Illustratively, the parameters of each individual ISB sub-device that might be subject to this engineering process include: the peak energy of the ISB optical transitions (emission or absorption) associated with each RT region, the position of each sub-device in the stack; the oscillator strengths of these ISB transitions; the energy bandwidth of each transition; and the total length of the RT and I/R regions of each ISB sub-device. In one embodiment, our approach may be used to engineer a gain profile that has peaks at a multiplicity of different wavelengths, thus realizing a multi-wavelength ISB optical source in which the applied electric field self-proportions itself so that each individual ISB sub-device experiences the appropriate field strength for its particular design. Alternatively, the gain profile may be engineered to be relatively flat over a predetermined wavelength range. In another embodiment, our approach may be used to generate a function that compensates for a characteristic of another device. For example, our heterogeneous ISB device may be engineered to have a gain profile that compensates for the loss profile of another device. Alternatively, the gain/loss profile may be engineered to produce a nonlinear refractive index profile in our device that compensates for that of another device (e.g., an optical fiber).

    摘要翻译: 光学装置包括至少两个不同的子带间(ISB)光学子装置的叠层,其中各个ISB子装置的增益/损耗曲线相互适应或设计,以便产生预定的整体功能 组合。 我们将此组合设备定义为异构,因为并非所有的单个ISB子设备都是相同的。 示例性地,可能受该工程过程影响的各个ISB子设备的参数包括:与每个RT区域相关联的ISB光学跃迁(发射或吸收)的峰值能量,堆叠中每个子设备的位置 ; 这些ISB转换的振荡器强度; 每个过渡的能量带宽; 以及每个ISB子设备的RT和I / R区域的总长度。 在一个实施例中,我们的方法可以用于设计在多个不同波长处具有峰值的增益分布,从而实现多波长ISB光源,其中所施加的电场自身比例,使得每个单独的ISB子载波, 设备体验其特定设计的适当场强。 或者,增益分布可以被设计为在预定波长范围上相对平坦。 在另一个实施例中,我们的方法可以用于产生补偿另一设备的特性的功能。 例如,我们的异构ISB设备可以被设计为具有补偿另一设备的丢失简档的增益简档。 或者,增益/损耗曲线可以被设计为在我们的装置中产生非线性折射率分布,其补偿另一装置(例如,光纤)的折射率分布。

    Unipolar semiconductor laser
    8.
    发明授权
    Unipolar semiconductor laser 失效
    单极半导体激光器

    公开(公告)号:US5457709A

    公开(公告)日:1995-10-10

    申请号:US223341

    申请日:1994-04-04

    摘要: This application discloses, to the best of our knowledge, the first unipolar laser. An exemplary embodiment of the laser was implemented in the GaInAs/AlInAs system and emits radiation of about 4.2 .mu.m wavelength. Embodiments in other material systems are possible, and the lasers can be readily designed to emit at a predetermined wavelength in a wide spectral region. We have designated the laser the "quantum cascade" (QC) laser. The QC laser comprises a multilayer semiconductor structure that comprises a multiplicity of essentially identical undoper "active" regions, a given active region being separated from an adjoining one by a doped "energy relaxation" region. In a currently preferred embodiment each active region comprises three coupled quantum wells designed to facilitate attainment of population inversion. In the currently preferred embodiment the energy relaxation regions are digitally graded gap regions. However, other energy relaxation regions are possible. The unipolar plasma in a unipolar laser can be manipulated by means of an electric "control" field, facilitating, for instance, beam steering or external control of the modal gain of the laser. Means for accomplishing this are discussed.

    摘要翻译: 根据我们所知,本应用公开了第一单极激光器。 激光器的示例性实施例在GaInAs / AlInAs系统中实现并且发射约4.2μm波长的辐射。 其他材料系统中的实施例是可能的,并且激光器可以容易地设计成在宽光谱区域中以预定波长发射。 我们已经将激光器命名为“量子级联”(QC)激光器。 QC激光器包括多层半导体结构,其包括多个基本上相同的未掺杂的“活性”区域,给定的有源区域通过掺杂的“能量弛豫”区域与邻接的区域分离。 在当前优选实施例中,每个有源区域包括三个耦合的量子阱,被设计成有助于达到群体反转。 在当前优选的实施例中,能量松弛区域是数字渐变间隙区域。 然而,其他能量松弛区也是可能的。 单极激光器中的单极性等离子体可以通过电气“控制”场进行操纵,从而有助于例如光束转向或激光的模态增益的外部控制。 讨论了实现这一点的手段。