摘要:
The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
摘要:
The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
摘要:
The invention provides non-naturally occurring microbial organisms having a formaldehyde fixation pathway, a formate assimilation pathway, and/or a methanol metabolic pathway in combination with a fatty alcohol, fatty aldehyde, fatty acid or isopropanol pathway, wherein the microbial organisms selectively produce a fatty alcohol, fatty aldehyde or fatty acid of a specified length or isopropanol. The microbial organisms provided advantageously enhance the production of substrates and/or pathway intermediates for the production of chain length specific fatty alcohols, fatty aldehydes, fatty acids or isopropanol. In some aspects, the microbial organisms of the invention have select gene disruptions or enzyme attenuations that increase production of fatty alcohols, fatty aldehydes or fatty acids. The invention additionally provides methods of using the above microbial organisms to produce a fatty alcohol, a fatty aldehyde, a fatty acid or isopropanol.
摘要:
The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO), 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway comprising at least one exogenous nucleic acid encoding a BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine pathway enzyme expressed in a sufficient amount to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO, 4-hydroxybutyryl-CoA, 4-hydroxybutanal or putrescine.
摘要:
A non-naturally occurring microbial organism includes a microbial organism having a reductive TCA or Wood-Ljungdahl pathway in which at least one exogenous nucleic acid encoding these pathway enzymes is expressed in a sufficient amount to enhance carbon flux through acetyl-CoA. A method for enhancing carbon flux through acetyl-CoA includes culturing theses non-naturally occurring microbial organisms under conditions and for a sufficient period of time to produce a product having acetyl-CoA as a building block. Another non-naturally occurring microbial organism includes at least one exogenous nucleic acid encoding an enzyme expressed in a sufficient amount to enhance the availability of reducing equivalents in the presence of carbon monoxide or hydrogen, thereby increasing the yield of redox-limited products via carbohydrate-based carbon feedstock. A method for enhancing the availability of reducing equivalents in the presence of carbon monoxide or hydrogen includes culturing this organism for a sufficient period of time to produce a product.
摘要:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as adipate, 6-aminocaproate, hexamethylenediamine or caprolactam. Also provided herein are methods for using such an organism to produce adipate, 6-aminocaproate, hexamethylenediamine or caprolactam.
摘要:
The invention provides non-naturally occurring microbial organisms having a 4-hydroxybutyrate pathway and being capable of producing 4-hydroxybutyrate, wherein the microbial organism comprises one or more genetic modifications. The invention additionally provides methods of producing 4-hydroxybutyrate or related products using the microbial organisms.
摘要:
Provided herein are non-naturally occurring eukaryotic organisms that can be engineered to produce and increase the availability of cytosolic acetyl-CoA. Also provided herein are non-naturally occurring eukaryotic organisms having a 1,3-butanediol (1,3-BDO) pathway. and methods of using such organisms to produce 1,3-BDO.
摘要:
The invention provides non-naturally occurring microbial organisms containing butadiene or 2,4-pentadienoate pathways comprising at least one exogenous nucleic acid encoding a butadiene or 2,4-pentadienoate pathway enzyme expressed in a sufficient amount to produce butadiene or 2,4-pentadienoate. The organism can further contain a hydrogen synthesis pathway. The invention additionally provides methods of using such microbial organisms to produce butadiene or 2,4-pentadienoate by culturing a non-naturally occurring microbial organism containing butadiene or 2,4-pentadienoate pathways as described herein under conditions and for a sufficient period of time to produce butadiene or 2,4-pentadienoate. Hydrogen can be produced together with the production of butadiene or 2,4-pentadienoate.
摘要:
The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.