Abstract:
Structures for a field-effect transistor and methods for forming a field-effect transistor. The structure includes a gate structure having a sidewall and a sidewall spacer arranged adjacent to the sidewall of the gate structure. The sidewall spacer includes an energy removal film material and one or more air gaps in the energy removal film material.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one embodiment, a method for fabricating integrated circuits includes forming a gate dielectric overlying a substrate, and forming a base work function layer that includes tungsten overlying the gate dielectric. The base work function layer overlies the gate dielectric in a first and second region, where the first region is one of a pFET region or an nFET region and the second region is the other of the pFET region or the nFET region. A mask is formed over the first region, and then the second region is exposed. A work function value of the base work function layer in the second region is altered to produce a modified work function layer. The mask is removed from the over the first region, and a gate electrode is formed overlying the base and modified work function layers.
Abstract:
Methods of facilitating fabrication of circuit structures are provided which include, for instance: providing a structure with a film layer; modifying an etch property of the film layer by implanting at least one species of element or molecule into the upper portion of the film layer, the etch property of the film layer remaining unmodified beneath the upper portion; and subjecting the structure and film layer with the modified etch property to an etching process, the modified etch property of the film layer facilitating the etching process. Modifying the etch property of the upper portion of the film layer may include making the upper portion of the film layer preferentially susceptible or preferentially resistant to the etching process depending on the circuit fabrication approach being facilitated.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes defining a pFET region and an nFET region of a semiconductor substrate. The method deposits a first work function material including tungsten and nitride over the pFET region and the nFET region of the semiconductor substrate. The method includes selectively modifying the first work function material in a selected region. Further, the method includes depositing a metal fill over the first work function material in the pFET region and the nFET region of the semiconductor substrate.
Abstract:
A method of forming a metalized contact in MOL is provided. Embodiments include forming a TT through an ILD down to a S/D region; forming a SiOC, SiCN, or SiON layer on side surfaces of the TT; performing a GCIB vertical etching at a 0° angle; implanting Si into the TT by an angled PAI; removing a portion of the TT by Ar sputtering and a remote plasma assisted dry etch process; forming NiSi on the S/D region at the bottom of the TT; and filling the TT with contact metal over the NiSi.
Abstract:
A lithography mask structure is provided, including: a substrate; at least one reflective layer over the substrate; and an absorber film stack over the at least one reflective layer, the absorber film stack including a plurality of first film layers of a first material and at least one second film layer of a second material. The second material is different from the first material, and the second film layer(s) is interleaved with the plurality of first film layers. In one embodiment, the total thickness of the absorber film stack is less than 50 nm. In another embodiment, the reflectivity of the absorber film stack is less than 2% for a pre-defined wavelength of EUV light. In a further embodiment, the second film layer(s) prevents the average crystallite size of the first film layers from exceeding the thickness of the first film layers.
Abstract:
The present disclosure relates to methods for forming IC structures having recessed gate spacers and related IC structures. A method may include: forming a first and second dummy gate over a fin, each dummy gate having gate spacers disposed on sidewalls thereof such that an opening is disposed between a first gate spacer and a second gate spacer, the opening exposing a source/drain region; recessing the first and second gate spacers; forming an etch stop layer within the opening such that the etch stop layer extends vertically along the recessed first and second gate spacers; forming a dielectric fill over the etch stop layer to substantially fill the opening; replacing the first and second dummy gates with first and second RMG structures; recessing the first and second RMG structures; and forming a gate cap layer over the first and second RMG structures.
Abstract:
Structures for a field-effect transistor and methods for forming a structure for a field-effect transistor. A gate cavity is formed in a dielectric layer that includes a bottom surface and a plurality sidewalls that extend to the bottom surface. A gate dielectric layer is formed at the sidewalls and the bottom surface of the gate cavity. A work function metal layer is deposited on the gate dielectric layer at the sidewalls and the bottom surface of the gate cavity. A fill metal layer is deposited inside the gate cavity after the work function metal layer is deposited. The fill metal layer is formed in direct contact with the work function metal layer.
Abstract:
Programmable via devices and fabrication methods thereof are presented. The programmable via devices include, for instance, a first metal layer and a second metal layer electrically connected by a via link. The via link includes a semiconductor portion and a metal portion, where the via link facilitates programming of the programmable via device by applying a programming current through the via link to migrate materials between the semiconductor portion and the metal portion to facilitate a change of an electrical resistance of the via link. In one embodiment, the programming current facilitates formation of at least one gap region within the via link, the at least one gap region facilitating the change of the electrical resistance of the via link.
Abstract:
Interconnect structures and methods of forming such interconnect structures. A spacer is formed inside an opening in a dielectric layer. After the spacer is formed, a conductive plug is formed inside the opening in the dielectric layer. After the conductive plug is formed, the spacer is removed to define an air gap located inside the opening in the dielectric layer. The air gap is located between the conductive plug and the opening in the dielectric layer.