Abstract:
A multilayer anisotropic conductive adhesive in which resistance to reflow is sufficiently obtained and which can facilitate connection and a connection structure using the multilayer anisotropic conductive adhesive are provided. A multilayer anisotropic conductive adhesive 11 includes a plurality of adhesive layers 1 and 2 laminated, each of which at least contains an insulating resin and a hardening agent; wherein conductive particles are contained either in the plurality of adhesive layers 1 or in the plurality of adhesive layers 2, and at least the top or bottom adhesive layer 1 has the DSC (differential scanning calorimetry) exothermic peak temperature of 130° C. or more and 180° C. or less. Further, a connection structure is constructed in which a first electronic component that has an electrode and an insulating film on the surface thereof and a second electronic component that has an electrode on the surface thereof are electrically connected through the above-described multilayer anisotropic conductive adhesive 11.
Abstract:
A connecting material containing a thermosetting resin has a surface tension of 25 to 40 mN/m (at 25° C.). The connecting material contains a surfactant to adjust the surface tension to 25 to 40 mN/m (at 25° C.). The surfactant is a silicone resin-based surfactant or a fluorine resin-based surfactant. The ratio of surfactant content is 0.01 to 5.0 wt pts per 100 wt pts resin content in the connecting material.
Abstract:
Provided is an electrically conductive adhesive capable of reliably connecting a semiconductor element and a flexible wiring board without causing short circuits. When electrically conductive adhesives of the present invention containing conductive particles having an average diameter of from 10 nm or more to 90 nm or less are used to connect a flexible wiring board and a semiconductor element, the signal part of a wiring film under a protective film is protected and no short circuit occurs in wiring films of the resulting electric device because conductive particles do not break through the protective film of the semiconductor element.
Abstract:
An anisotropic conductive adhesive for anisotropic conductive connection of an electronic component to a wiring board under no pressure or a low pressure is prepared by dispersing conductive particles in a binder resin composition. A metal flake powder having a major axis of 10 to 40 μm, a thickness of 0.5 to 2 μm, and an aspect ratio of 5 to 50, is used as the conductive particles, the minor axis of the metal flake power being, in a length, 10 to 50% of the major axis. The amount of the conductive particles contained in the anisotropic conductive adhesive is 5 to 35 mass %.
Abstract:
An anisotropic conductive adhesive for anisotropic conductive connection of an electronic component to a wiring board under no pressure or a low pressure is prepared by dispersing conductive particles in a binder resin composition. A metal flake powder having a major axis of 10 to 40 μm, a thickness of 0.5 to 2 μm, and an aspect ratio of 5 to 50, is used as the conductive particles. The amount of the conductive particles contained in the anisotropic conductive adhesive is 5 to 35 mass %. This anisotropic conductive adhesive is supplied to a connection terminal of a wiring board, and a connection terminal of an electronic component is preliminarily connected to a connection terminal of a substrate while arranging the anisotropic conductive adhesive therebetween. Then, the electronic component is heated without applying a pressure or while applying a low pressure to the electronic component to connect the substrate with the electronic component.
Abstract:
A film-shaped adhesive application apparatus includes a supply reel retainer for mounting a film-shaped adhesive supply reel used to wind into a roll shape a film-shaped adhesive 1 comprising a base film and an adhesive layer formed thereon, thermocompression bonding means for thermocompression-bonding the film-shaped adhesive drawn from the film-shaped adhesive supply reel to an adherend, and a winding reel retainer for mounting a winding reel used to wind the base film of the thermocompression-bonded film-shaped adhesive, and further temperature control means (thermal shield plate, cooler, or the like) for controlling the film-shaped adhesive supply reel mounted on the supply reel retainer at a prescribed temperature.
Abstract:
A film-shaped adhesive application apparatus includes a supply reel retainer for mounting a film-shaped adhesive supply reel used to wind into a roll shape a film-shaped adhesive 1 comprising a base film and an adhesive layer formed thereon, thermocompression bonding means for thermocompression-bonding the film-shaped adhesive drawn from the film-shaped adhesive supply reel to an adherend, and a winding reel retainer for mounting a winding reel used to wind the base film of the thermocompression-bonded film-shaped adhesive, and further temperature control means (thermal shield plate, cooler, or the like) for controlling the film-shaped adhesive supply reel mounted on the supply reel retainer at a prescribed temperature.
Abstract:
In a method for non-destructively testing the curing level of the cured product of a curable adhesive composition, a fluorescent component that emits fluorescent light upon irradiation with excitation light is added to the curable adhesive composition, the curable adhesive composition containing this fluorescent component is cured, the cured product thus obtained is irradiated with excitation light, and the fluorescent light thus produced is observed to test the curing level of the cured product.
Abstract:
An anisotropic conductive film is provided that does not have a light-reflecting layer on a light emitting diode element which causes costs to increase when a light emitting device that uses an LED element is flip-chip mounted, and that does not cause emission efficiency to deteriorate. Further, a light emitting device that uses such an anisotropic conductive film is provided. This anisotropic conductive film has a structure in which a light-reflecting insulating adhesive layer and an anisotropic conductive adhesive layer are laminated, wherein the light-reflecting insulating adhesive layer has a structure in which light-reflecting particles are dispersed in an insulating adhesive. The light emitting device has a structure in which a light emitting diode element is flip-chip-mounted on a substrate, with this anisotropic conductive film provided between a connection terminal on the substrate and a bump for connection of the light emitting diode element.
Abstract:
A speaker diaphragm with a circular opening in a center zone thereof has a pattern of concave and convex sections formed on a front surface or a rear surface thereof. A plurality of concave and convex sections are formed in each of regions provided at a regular interval with a specific angle in a circumferential direction of the diaphragm. The concave and convex sections formed in each region have different sizes in a radial direction of the diaphragm. The concave and convex sections formed in adjacent regions are displaced from each other in the radial direction. The concave and convex sections formed on the diaphragm are aligned on at least a first and a second imaginary curved line, respectively, each imaginary curved line passing regions and approaching an inner periphery of the circular opening from an outer periphery of the diaphragm.