摘要:
A method for fabricating a field effect transistor device includes patterning a fin on substrate, patterning a gate stack over a portion of the fin and a portion of an insulator layer arranged on the substrate, forming a protective barrier over the gate stack, a portion of the fin and a portion of the insulator layer, the protective barrier enveloping the gate stack, depositing a second insulator layer over portions of the fin and the protective barrier, performing a first etching process to selectively remove portions of the second insulator layer to define cavities that expose portions of source and drain regions of the fin without appreciably removing the protective barrier, and depositing a conductive material in the cavities.
摘要:
Disclosed are methods of forming improved fin-type field effect transistor (FINFET) structures and, particularly, relatively tall single-fin FINFET structures that provide increased drive current over conventional single-fin FINFET structures. The use of such a tall single-fin FINFET provides significant area savings over a FINFET that requires multiple semiconductor fins to achieve the same amount of drive current. Furthermore, since only a single fin is used, only a single leakage path is present at the bottom of the device. Thus, the disclosed FINFET structures can be incorporated into a cell in place of multi-fin FINFETs in order to allow for cell height scaling without violating critical design rules or sacrificing performance.
摘要:
A semiconductor structure including a first substantially U-shaped and/or H-shaped channel is disclosed. The semiconductor structure may further include a second substantially U-shaped and/or H-shaped channel positioned above the first channel. A method of forming a substantially U-shaped and/or H-shaped channel is also disclosed. The method may include forming a fin structure on a substrate where the fin structure includes an alternating layers of sacrificial semiconductor and at least one silicon layer or region. The method may further include forming additional silicon regions vertically on sidewalls of the fin structure. The additional silicon regions may contact the silicon layer or region of the fin structure to form the substantially U-shaped and/or H-shaped channel(s). The method may further include removing the sacrificial semiconductor layers and forming a gate structure around the substantially U-shaped and/or substantially H-shaped channels.
摘要:
The disclosure is directed to gate all-around integrated circuit structures, finFETs having a dielectric isolation, and methods of forming the same. The gate all-around integrated circuit structure may include a first insulator region within a substrate; a pair of remnant liner stubs disposed within the first insulator region; a second insulator region laterally adjacent to the first insulator region within the substrate; a pair of fins over the first insulator region, each fin in the pair of fins including an inner sidewall facing the inner sidewall of an adjacent fin in the pair of fins and an outer sidewall opposite the inner sidewall; and a gate structure substantially surrounding an axial portion of the pair of fins and at least partially disposed over the first and second insulator regions, wherein each remnant liner stub is substantially aligned with the inner sidewall of a respective fin of the pair of fins.
摘要:
One method disclosed herein includes, among other things, forming a gate contact opening in a layer of insulating material, wherein the gate contact opening is positioned at least partially vertically above a active region, the gate contact opening exposing a portion of at least a gate cap layer of a gate structure, performing at least one etching process to remove the gate cap layer and recess a sidewall spacer so as to thereby define a spacer cavity and expose at least an upper surface of a gate electrode within the gate contact opening, filling the spacer cavity with an insulating material while leaving the upper surface of the gate electrode exposed, and forming a conductive gate contact in the gate contact opening.
摘要:
One illustrative method disclosed herein includes removing the sidewall spacers and a gate cap layer so as to thereby expose an upper surface and sidewalls of a sacrificial gate structure, forming an etch stop layer above source/drain regions of a device and on the sidewalls and upper surface of the sacrificial gate structure, forming a first layer of insulating material above the etch stop layer, removing the sacrificial gate structure so as to define a replacement gate cavity that is laterally defined by portions of the etch stop layer, forming a replacement gate structure in the replacement gate cavity, and forming a second gate cap layer above the replacement gate structure.
摘要:
A semiconductor structure including a first substantially U-shaped and/or H-shaped channel is disclosed. The semiconductor structure may further include a second substantially U-shaped and/or H-shaped channel positioned above the first channel. A method of forming a substantially U-shaped and/or H-shaped channel is also disclosed. The method may include forming a fin structure on a substrate where the fin structure includes an alternating layers of sacrificial semiconductor and at least one silicon layer or region. The method may further include forming additional silicon regions vertically on sidewalls of the fin structure. The additional silicon regions may contact the silicon layer or region of the fin structure to form the substantially U-shaped and/or H-shaped channel(s). The method may further include removing the sacrificial semiconductor layers and forming a gate structure around the substantially U-shaped and/or substantially H-shaped channels.
摘要:
A three-dimensional transistor includes a semiconductor substrate, a fin coupled to the substrate, the fin including an active region across a top portion thereof, the active region including a source, a drain and a channel region therebetween. The transistor further includes a gate situated above the channel region, and a gate contact situated in the active region, no portion thereof being electrically coupled to the source or drain. The transistor is achieved by removing a portion of the source/drain contact situated beneath the gate contact during fabrication.
摘要:
One illustrative method disclosed herein includes, among other things, forming a fin that is positioned above and vertically spaced apart from an upper surface of a semiconductor substrate, the fin having an upper surface, a lower surface and first and second side surfaces, wherein an axis of the fin in a height direction of the fin is oriented substantially parallel to the upper surface of the substrate, and wherein a first side surface of the fin contacts a first insulating material, forming a gate structure around the upper surface, the second side surface and the lower surface of the fin, and forming a gate contact structure that is conductively coupled to the gate structure.
摘要:
One method disclosed herein includes, among other things, forming a gate contact opening in a layer of insulating material, wherein the gate contact opening is positioned at least partially vertically above a active region, the gate contact opening exposing a portion of at least a gate cap layer of a gate structure, performing at least one etching process to remove the gate cap layer and recess a sidewall spacer so as to thereby define a spacer cavity and expose at least an upper surface of a gate electrode within the gate contact opening, filling the spacer cavity with an insulating material while leaving the upper surface of the gate electrode exposed, and forming a conductive gate contact in the gate contact opening.