Abstract:
A method for processing a semiconductor device in accordance with various embodiments may include: depositing a first metallization layer over a semiconductor workpiece; patterning the first metallization layer; and depositing a second metallization layer over the patterned first metallization layer, wherein depositing the second metallization layer includes an electroless deposition process including immersing the patterned first metallization layer in a metal electrolyte.
Abstract:
A chip package is provided. The chip package may include at least one chip, an exposed metal region and a metal protection layer structure over the exposed metal region and configured to protect the metal region from oxidation. The protection layer structure includes a low-temperature deposited oxide, and a hydrothermally converted metal oxide layer over the protection layer structure.
Abstract:
A chip package is provided. The chip package may include at least one chip, an exposed metal region and a metal protection layer structure over the exposed metal region and configured to protect the metal region from oxidation. The protection layer structure includes a low-temperature deposited oxide, and a hydrothermally converted metal oxide layer over the protection layer structure.
Abstract:
A chip arrangement including: a chip including a chip back side; a substrate including a surface with a plating; and a zinc-based solder alloy which attaches the chip back side to the plating on the surface of the substrate, the zinc-based solder alloy including, by weight, 1% to 30% aluminum, 0.5% to 20% germanium, and 0.5% to 20% gallium, wherein a balance of the zinc-based solder alloy is zinc.
Abstract:
A method is disclosed. In one example, the method comprises mounting an electronic component on an adhesive base structure on a temporary carrier, and dissolving at least part of the base structure by irradiating the base structure with electromagnetic radiation to thereby release the electronic component.
Abstract:
A chip package is provided. The chip package may include at least one chip, an exposed metal region and a metal protection layer structure over the exposed metal region and configured to protect the metal region from oxidation. The protection layer structure includes a low-temperature deposited oxide, and a hydrothermally converted metal oxide layer over the protection layer structure.
Abstract:
A chip arrangement including a chip comprising a chip back side; a back side metallization on the chip back side, the back side metallization including a plurality of layers; a substrate comprising a surface with a metal layer; a zinc-based solder alloy configured to attach the back side metallization to the metal layer, the zinc-based solder alloy having by weight 8% to 20% aluminum, 0.5% to 20% magnesium, 0.5% to 20% gallium, and the balance zinc; wherein the metal layer is configured to provide a good wettability of the zinc-based solder alloy on the surface of the substrate. The plurality of layers may include one or more of a contact layer configured to contact a semiconductor material of the chip back side; a barrier layer; a solder reaction, and an oxidation protection layer configured to prevent oxidation of the solder reaction layer.
Abstract:
According to various embodiments, a method for processing a semiconductor region, wherein the semiconductor region comprises at least one precipitate, may include: forming a precipitate removal layer over the semiconductor region, wherein the precipitate removal layer may define an absorption temperature at which a chemical solubility of a constituent of the at least one precipitate is greater in the precipitate removal layer than in the semiconductor region; and heating the at least one precipitate above the absorption temperature.