Abstract:
A pressure sensor includes a lidless structure defining an internal chamber for a sealed environment and presenting an aperture; a chip including a membrane deformable on the basis of external pressure, the chip being mounted outside the lidless structure in correspondence to the aperture so that the membrane closes the sealed environment; and a circuitry configured to provide a pressure measurement information based on the deformation of the membrane.
Abstract:
A semiconductor packaging system includes a semiconductor device package having a semiconductor chip with two or more terminals and a protective structure encapsulating and electrically insulating the semiconductor chip. Two or more electrical conductors that are each electrically connected to one of the terminals extend to an outer surface of the protective structure. A first surface feature is on an exterior surface of the semiconductor device package. The system further includes a connectable package extender having a second surface feature configured to interlock with the first surface feature when the first surface feature is mated with the second surface feature so as to secure the package extender to the semiconductor device package. An extension portion adjoins and extends away from the exterior surface of the semiconductor device package when the package extender is secured to the semiconductor device package.
Abstract:
In one embodiment, a method of testing a semiconductor component includes loading a plurality of semiconductor components into a main turret of a turret handler, transporting the plurality of semiconductor components using the main turret to a test area, and splitting the plurality of semiconductor components into a first set and a second set. The method further includes testing a first semiconductor component in the first set at a first test pad using a tester while transporting a second semiconductor component in the second set to a second test pad and testing the second semiconductor component using the tester while transporting the first semiconductor component out of the first test pad. The first set and the second set are merged into the plurality of semiconductor components and the plurality of semiconductor components are transported away from the test area using the main turret.
Abstract:
A semiconductor packaging system includes a semiconductor device package having a semiconductor chip with two or more terminals and a protective structure encapsulating and electrically insulating the semiconductor chip. Two or more electrical conductors that are each electrically connected to one of the terminals extend to an outer surface of the protective structure. A first surface feature is on an exterior surface of the semiconductor device package. The system further includes a connectable package extender having a second surface feature configured to interlock with the first surface feature when the first surface feature is mated with the second surface feature so as to secure the package extender to the semiconductor device package. An extension portion adjoins and extends away from the exterior surface of the semiconductor device package when the package extender is secured to the semiconductor device package.
Abstract:
A pressure sensor includes a lidless structure defining an internal chamber for a sealed environment and presenting an aperture; a chip including a membrane deformable on the basis of external pressure, the chip being mounted outside the lidless structure in correspondence to the aperture so that the membrane closes the sealed environment; and a circuitry configured to provide a pressure measurement information based on the deformation of the membrane.
Abstract:
A semiconductor assembly includes a substrate with electrically conductive regions and a semiconductor package. The semiconductor package includes a semiconductor die, first and second terminals, and a mold compound. The die has opposing first and second main surfaces, an edge disposed perpendicular to the first and second main surfaces, a first electrode at the first main surface, and a second electrode at the second main surface. The first terminal is attached to the first electrode. The second terminal is attached to the second electrode. The mold compound encloses at least part of the die and the first and second terminals so that each of the terminals has a side parallel with and facing away from the die that remains at least partly uncovered by the mold compound. The first and second terminals of the semiconductor package are connected to different ones of the electrically conductive regions of the substrate.
Abstract:
A semiconductor assembly includes a substrate with electrically conductive regions and a semiconductor package. The semiconductor package includes a semiconductor die, first and second terminals, and a mold compound. The die has opposing first and second main surfaces, an edge disposed perpendicular to the first and second main surfaces, a first electrode at the first main surface, and a second electrode at the second main surface. The first terminal is attached to the first electrode. The second terminal is attached to the second electrode. The mold compound encloses at least part of the die and the first and second terminals so that each of the terminals has a side parallel with and facing away from the die that remains at least partly uncovered by the mold compound. The first and second terminals of the semiconductor package are connected to different ones of the electrically conductive regions of the substrate.
Abstract:
A semiconductor package includes a plurality of half bridge assemblies each including a metal lead, a first power transistor die attached to a first side of the metal lead, and a second power transistor die disposed under the first power transistor die and attached to a second side of the metal lead opposite the first side. Each metal lead has a notch which exposes one or more bond pads at a side of the second power transistor die attached to the metal lead. The semiconductor package also includes a controller die configured to control the power transistor dies. Each power transistor die, each metal lead and the controller die are embedded in a mold compound. Bond wire connections are provided between the controller die and the one or more bond pads at the side of each second power transistor die exposed by the notch in the corresponding metal lead.
Abstract:
An electronic module is provided, comprising an electronic chip arranged in the electronic module and comprising an input terminal and an output terminal; a first current path electrically connected to the input terminal; a second current path electrically connected to the output terminal; and an insulation arranged between the first current path and the second current path, wherein the first current path and the second current path extend in the same direction and arranged in close proximity to each other.
Abstract:
In one embodiment, a method of testing a semiconductor component includes loading a plurality of semiconductor components into a main turret of a turret handler, transporting the plurality of semiconductor components using the main turret to a test area, and splitting the plurality of semiconductor components into a first set and a second set. The method further includes testing a first semiconductor component in the first set at a first test pad using a tester while transporting a second semiconductor component in the second set to a second test pad and testing the second semiconductor component using the tester while transporting the first semiconductor component out of the first test pad. The first set and the second set are merged into the plurality of semiconductor components and the plurality of semiconductor components are transported away from the test area using the main turret.