摘要:
An embedded thin film capacitor and methods of its fabrication are disclosed. The embedded thin film capacitor includes two conductive plates separated by a dielectric layer. In embodiments, the capacitor is enclosed within a package substrate. A method of forming the embedded thin film capacitor includes forming a first insulating layer on a bottom plate and a first trace. A first opening is then formed in a first insulating layer to expose a first region of a bottom plate. An adhesive layer is then formed on the first insulating layer and on top of the exposed first region of the bottom plate. A second opening is formed through the insulating layer and the first insulating layer to expose a second region of the bottom plate. A top plate is formed within the first opening and a via is formed within the second opening.
摘要:
A hybrid pitch package includes a standard package pitch zone of the package having only standard package pitch sized features that is adjacent to a smaller processor pitch sized zone of the package having smaller processor pitch sized features. The package may be formed by obtaining a package having standard package pitch sized features (such as from another location or a package processing facility), forming a protective mask over a standard package pitch zone of the package that is adjacent to a smaller processor pitch sized zone on the package, and then forming smaller processor pitch sized features (such as contacts, traces and interconnects) in the smaller processor pitch sized zone at a chip fabrication processing facility. The smaller processor pitch sized features can be directly connected to (thus reducing the package connection area needed) a chip or device having processor pitch sized features (e.g., exposed contacts).
摘要:
Embodiments include semiconductor device packages and methods of forming such packages. In an embodiment, the package may include a die-side reinforcement layer with a cavity formed through the die-side reinforcement layer. A die having a first side and an opposite second side comprising a device side may be positioned in the cavity with the first side of the die being substantially coplanar with a first side of the die-side reinforcement layer. In an embodiment, a build-up structure may be coupled to a second side of the die. Embodiments include a build-up structure that includes a plurality of alternating layers of patterned conductive material and insulating material.
摘要:
Embodiments include semiconductor device packages and methods of forming such packages. In an embodiment, the package may include a die-side reinforcement layer with a cavity formed through the die-side reinforcement layer. A die having a first side and an opposite second side comprising a device side may be positioned in the cavity with the first side of the die being substantially coplanar with a first side of the die-side reinforcement layer. In an embodiment, a build-up structure may be coupled to a second side of the die. Embodiments include a build-up structure that includes a plurality of alternating layers of patterned conductive material and insulating material.
摘要:
Microelectronic systems encapsulated in a stretchable/flexible material, which is skin/bio-compatible and able to withstand environmental conditions. In one embodiment of the present description, the microelectronic system includes a microelectronic device that is substantially encapsulated in a non-permeable encapsulant, such as, butyl rubbers, ethylene propylene rubbers, fluoropolymer elastomers, or combinations thereof. In another embodiment, the microelectronic system includes a microelectronic device that is substantially encapsulated in a permeable encapsulant, such as polydimethylsiloxane, wherein a non-permeable encapsulant substantially encapsulates the permeable encapsulant.
摘要:
An apparatus including a die including a device side with contact points and lateral sidewalls defining a thickness of the die; a build-up carrier coupled to the die, the build-up carrier including a plurality of alternating layers of patterned conductive material and insulating material, wherein at least one of the layers of patterned conductive material is coupled to one of the contact points of the die; and an interference shield including a conductive material disposed on the die and a portion of the build-up carrier. The apparatus may be connected to a printed circuit board. A method including forming a build-up carrier adjacent a device side of a die including a plurality of alternating layers of patterned conductive material and insulating material; and forming a interference shield on a portion of the build-up carrier.
摘要:
Embodiments include semiconductor device packages and methods of forming such packages. In an embodiment, the package may include a die-side reinforcement layer with a cavity formed through the die-side reinforcement layer. A die having a first side and an opposite second side comprising a device side may be positioned in the cavity with the first side of the die being substantially coplanar with a first side of the die-side reinforcement layer. In an embodiment, a build-up structure may be coupled to a second side of the die. Embodiments include a build-up structure that includes a plurality of alternating layers of patterned conductive material and insulating material.
摘要:
Embodiments include semiconductor device packages and methods of forming such packages. In an embodiment, the package may include a die-side reinforcement layer with a cavity formed through the die-side reinforcement layer. A die having a first side and an opposite second side comprising a device side may be positioned in the cavity with the first side of the die being substantially coplanar with a first side of the die-side reinforcement layer. In an embodiment, a build-up structure may be coupled to a second side of the die. Embodiments include a build-up structure that includes a plurality of alternating layers of patterned conductive material and insulating material.
摘要:
An apparatus including a die including a device side with contact points and lateral sidewalls defining a thickness of the die; a build-up carrier coupled to the die, the build-up carrier including a plurality of alternating layers of patterned conductive material and insulating material, wherein at least one of the layers of patterned conductive material is coupled to one of the contact points of the die; and an interference shield including a conductive material disposed on the die and a portion of the build-up carrier. The apparatus may be connected to a printed circuit board. A method including forming a build-up carrier adjacent a device side of a die including a plurality of alternating layers of patterned conductive material and insulating material; and forming a interference shield on a portion of the build-up carrier.
摘要:
Microelectronic substrates having copper alloy conductive routes to reduce warpage due to differing coefficient of thermal expansion of the components used to form the microelectronic substrates. In one embodiment, the conductive routes of the microelectronic substrate may comprise an alloy of copper and an alloying metal of tungsten, molybdenum, or a combination thereof. In another embodiment, the conductive routes of the microelectronic substrate may comprise an alloy of copper, an alloying metal of tungsten, molybdenum, or a combination thereof, and a co-deposition metal of nickel, cobalt, iron, or a combination thereof. In still another embodiment, the copper alloy conductive routes may have copper concentrations which are graded therethrough, which may enable better pattern formation during a subtractive etching process used to form the copper alloy conductive routes.