摘要:
Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.
摘要:
After forming an absorber layer containing cracks over a back contact layer, a passivation layer is formed over a top surface of the absorber layer and interior surfaces of the cracks. The passivation layer is deposited in a manner such that that the cracks in the absorber layer are fully passivated by the passivation layer. An emitter layer is then formed over the passivation layer to pinch off upper portions of the cracks, leaving voids in lower portions of the cracks.
摘要:
A method for fabricating a semiconductor device comprises providing a preformed spalled structure comprising a stressor layer stack on a first surface of a semiconductor substrate; forming an interfacial release layer on an exposed second surface of the semiconductor substrate; adhesively bonding the interfacial release layer to a rigid handle substrate using an epoxy; removing at least a portion of the stressor layer stack from the first surface of the semiconductor substrate; processing the semiconductor substrate; and removing the semiconductor substrate from the interfacial release layer to impart flexibility to the semiconductor substrate.
摘要:
A method for fabricating a semiconductor device comprises providing a preformed spalled structure comprising a stressor layer stack on a first surface of a semiconductor substrate; forming an interfacial release layer on an exposed second surface of the semiconductor substrate; adhesively bonding the interfacial release layer to a rigid handle substrate using an epoxy; removing at least a portion of the stressor layer stack from the first surface of the semiconductor substrate; processing the semiconductor substrate; and removing the semiconductor substrate from the interfacial release layer to impart flexibility to the semiconductor substrate.
摘要:
A method for fabricating a semiconductor device comprises providing a preformed spalled structure comprising a stressor layer stack on a first surface of a semiconductor substrate; forming an interfacial release layer on an exposed second surface of the semiconductor substrate; adhesively bonding the interfacial release layer to a rigid handle substrate using an epoxy; removing at least a portion of the stressor layer stack from the first surface of the semiconductor substrate; processing the semiconductor substrate; and removing the semiconductor substrate from the interfacial release layer to impart flexibility to the semiconductor substrate.
摘要:
Method for a controlled spalling utilizing vaporizable release layers. For example, a method comprises providing a base substrate, depositing a stressor layer and a vaporizable release layer on the base substrate, forming a flexible support layer on at least one of the stressor layer and the vaporizable release layer, spalling an upper portion of the base substrate, securing the spalled upper portion of the base substrate to a handle substrate, and vaporizing the vaporizable release layer.
摘要:
The present invention provides ART techniques with reduced LER. In one aspect, a method of ART with reduced LER is provided which includes the steps of: providing a silicon layer separated from a substrate by a dielectric layer; patterning one or more ART lines in the silicon layer selective to the dielectric layer; contacting the silicon layer with an inert gas at a temperature, pressure and for a duration sufficient to cause re-distribution of silicon along sidewalls of the ART lines patterned in the silicon layer; using the resulting smoothened, patterned silicon layer to pattern ART trenches in the dielectric layer; and epitaxially growing a semiconductor material up from the substrate at the bottom of each of the ART trenches, to form fins in the ART trenches.
摘要:
A method comprises providing a handle substrate having a front surface and a back surface; providing a layer of flexible semiconductor material having a front surface and a back surface and an at least partially sacrificial backing layer stack on the back surface of the layer of flexible semiconductor material; bonding the front surface of the layer of flexible semiconductor material to the front surface of the handle substrate; removing at least a portion of the at least partially sacrificial backing layer stack from the back surface of the layer of flexible semiconductor material; opening outgassing paths through the layer of flexible semiconductor material; and processing the layer of flexible semiconductor material.
摘要:
Techniques and structures for laser doping of crystalline semiconductors using a dopant-containing amorphous silicon stack for dopant source and passivation. A structure includes a crystalline semiconductor having at least one surface, a doped crystalline region disposed in at least one selected area of the semiconductor surface, and a dopant-containing amorphous silicon layer stack containing a same dopant as present in the doped crystalline region on at least a portion of the semiconductor surface outside the selected area, wherein the dopant-containing amorphous silicon layer stack passivates the portion of the semiconductor surface on which it is disposed.
摘要:
A method for forming a photovoltaic device includes forming a doped layer on a crystalline substrate, the doped layer having an opposite dopant conductivity as the substrate. A non-crystalline transparent conductive electrode (TCE) layer is formed on the doped layer at a temperature less than 150 degrees Celsius. The TCE layer is flash annealed to crystallize material of the TCE layer at a temperature above about 150 degrees Celsius for less than 10 seconds.