Abstract:
Vehicular pneumatic tire having an asymmetric tread formed in relation to a circumference of a running surface and process of making vehicular pneumatic tire. The vehicular pneumatic tire includes an outside region that includes an outside shoulder block row and an outside circumferential groove, an inside region that includes an inside shoulder block row and an inside circumferential groove, and a center region that is laterally delimited by the outside circumferential groove and the inside circumferential groove. A plurality of transverse grooves are arranged within the inside shoulder block row, and the plurality of transverse grooves further are arranged to extend into the center region. No more than about one-half of the plurality of transverse grooves are arranged to at least nearly entirely traverse the center region and are oriented to form an angle to a circumferential equator line of no more than approximately 30° over at least one-third of their longitudinal extensions. The process includes forming an outside region to include an outside shoulder block row and an outside circumferential groove, forming an inside region to include an inside shoulder block row and an inside circumferential groove, and laterally delimiting a center region with the outside circumferential groove and the inside circumferential groove. The process further includes arranging a plurality of transverse grooves within the inside shoulder block row and to extend into the center region. No more than one half of the plurality of transverse grooves are arranged to at least nearly entirely traverse the center region and are oriented to form an angle to a circumferential equator line of no more than approximately 30° over at least one-third of their longitudinal extensions.
Abstract:
A backpack and garment assembly according to the present invention includes a wearable garment having a left front portion, a right front portion, a back portion opposite from the left and right front portions, respectively, and a pair of sleeve portions extending away from the left and the right front portions, respectively. A storage pack is formed to an outer surface of the back portion of the torso wearable garment and configured to contain objects therein. The storage pack includes an upper end and opposed lower end and defines a first compartment extending within an interior area of the storage pack substantially between the upper and lower ends. The assembly includes a GPS device for security tracking and an electrical receptacle enabling external devices access to an internal battery. The wearable garment may be a coat, jacket, or vest.
Abstract:
Arrays of vertical extended cavity surface emitting lasers (VECSELs) are disclosed. The functionality of two or more conventional optical components are combined into an optical unit to reduce the number of components that must be aligned during packaging.
Abstract:
In apparatus for wavelength stabilizing and spectrally narrowing an output beam of a diode-laser, a cylindrical lens is arranged to collimate the beam in the fast axis of the diode laser without reducing divergence in the slow axis of the diode-laser. A length of optical fiber is arranged to receive the fast-axis collimated beam from the lens. The optical fiber has a core surrounded by a first cladding, the first cladding being surrounded by a second cladding. The core of the optical fiber has an elongated cross section and includes a wavelength selective Bragg grating. The core functions as a low-mode core in the width direction of the cross section. The length direction of the core is aligned with the fast axis of the diode-laser. The fast-axis collimated beam and the low mode width of the core provides that the Bragg grating only reflects light that propagates parallel the longitudinal axis of the fiber. Light reflected from the grating is fed back to the diode-laser for stabilizing the wavelength and spectrally narrowing the diode-laser output beam.
Abstract:
A vertical cavity apparatus includes first and second mirrors, a substrate and at least first and second active regions positioned between the first and second mirrors. At least one of the first and second mirrors is a fiber with a grating. At least a first tunnel junction is positioned between the first and second mirrors.
Abstract:
A two-dimensional integrated laser array having a plurality of surface-emitting laser arrays and a plurality of waveguides for optically coupling the individual laser arrays together. Each surface-emitting laser array includes a plurality of injection lasers which are evanescently coupled together in order to emit a single beam of light. The coupling provided by the waveguides causes the surface-emitting laser arrays to operate in phase and at the same wavelength as an external master oscillator. Therefore, the surface-emitting laser arrays generate coherent beams of light, which are combined and focused by a micro-lens. The output of the micro-lens is a single, coherent high-power optical beam which is emitted perpendicular to the two-dimensional integrated laser array.
Abstract:
A semiconductor laser array with features providing good beam quality at high powers, first by employing a laterally unguided diffraction region in which light from a set of waveguides is re-imaged in accordance with the Talbot effect and two arrays of waveguides may be used to provide a spatial filtering effect to select a desired array mode. This provides a laser array with increased power per unit solid angle, and with additional advantages of ability to scale the device up to larger arrays, ability to control the electrical excitation of the device for better optimization, and improved modal discrimination. A second aspect of the invention is the use of a resonance condition in an antiguide array, to produce a uniform near-field intensity pattern and improved coupling and device coherence. This resonance structure may be combined with the Talbot-effect structure to suppress the out-of-phase mode, or the out-of-phase mode may be suppressed by other means, such as by introducing interelement radiation losses or absorption losses in the antiguide array.
Abstract:
A method comprises coating a plurality of quantum dots with one or more insulating layers, dispensing the coated quantum dots in a sheet, and installing the coated quantum dots sheet in an light emitting diode (LED) lighting or electronic display device.
Abstract:
An LED is fabricated with a composite layer including quantum dots (QDs), wherein the QDs are provided in a silicone paste. A plurality of QD silicone paste reservoirs each contain a provided silicone paste with QDs of different wavelengths. Further, a silicone paste reservoir containing a clear silicone paste. A paste mixing chamber, in to which the QD paste reservoirs and the silicone paste reservoir supply their respective pastes, mixes together the pastes and form a mixed QD silicone paste. A silicone mixing and metering component receives the mixed QD silicone paste from the paste mixing chamber, and further receives A silicone and B silicone from a respective A silicone reservoir and a B silicone reservoir, measures, and mixes the mixed QD silicone paste with the A and B silicones to form a silicone polymer composite. A dispensing component receives to the silicone polymer composite from the mixing and metering component and dispenses the composite to a molding tool.