摘要:
A thin film type varistor and a method of manufacturing the same are provided. The method includes: a depositing a first zinc oxide thin film at a low temperature through a sputtering method; and a forming a zinc oxide thin film for a varistor by treating the first zinc oxide thin film with heat at a low temperature in an environment in which an inert gas and oxygen are injected. Accordingly, it is possible to lower a processing temperature and simplify a manufacturing process while maintaining a varistor characteristic so as to be applied to a highly integrated circuit.
摘要:
A thin film type varistor and a method of manufacturing the same are provided. The method includes: a depositing a first zinc oxide thin film at a low temperature through a sputtering method; and a forming a zinc oxide thin film for a varistor by treating the first zinc oxide thin film with heat at a low temperature in an environment in which an inert gas and oxygen are injected. Accordingly, it is possible to lower a processing temperature and simplify a manufacturing process while maintaining a varistor characteristic so as to be applied to a highly integrated circuit.
摘要:
Provided is a method of manufacturing a large-sized vanadium oxide thin film having a uniform surface, uniform film thickness and stable composition. According to the method, a vanadium-organometallic compound gas is injected into a chamber to form adsorption layer where molecules of the vanadium-organometallic compound are adsorbed on the surface of a substrate. After that, an oxygen precursor is injected into the chamber and thus allowed to accomplish surface-saturation reaction with the adsorbed materials to fabricate a vanadium oxide thin film.
摘要:
Provided are an insulator that has an energy band gap of 2 eV or more and undergoes an abrupt MIT without undergoing a structural change, a method of manufacturing the insulator, and a device using the insulator. The insulator is abruptly transitioned from an insulator phase into a metal phase by an energy change between electrons without undergoing a structural change.
摘要:
Provided is a method for forming a gate dielectric layer, in which a plasma oxide layer is finely formed by plasma at a temperature of 200° C. or below, and an atomic layer deposition (ALD) oxide layer is deposited. Further, the gate dielectric layer according to the present invention can be applied to a display device comprising a substrate such as a plastic substrate vulnerable to heat, have good interfacial characteristic, and allow a high dielectric layer to be applied thereto.
摘要:
Provided is an inorganic thin film electroluminescent device including a lower electrode, a lower insulating layer, a phosphor, an upper insulating layer, and an upper electrode, and the method for manufacturing the same, whereby it is possible to obtain the inorganic thin film electroluminescent device capable of realizing high brightness, excellent luminescence efficiency, and low breakdown field.
摘要:
Provided is a method for forming a gate dielectric layer, in which a plasma oxide layer is finely formed by plasma at a temperature of 200° C. or below, and an atomic layer deposition (ALD) oxide layer is deposited. Further, the gate dielectric layer according to the present invention can be applied to a display device comprising a substrate such as a plastic substrate vulnerable to heat, have good interfacial characteristic, and allow a high dielectric layer to be applied thereto.
摘要:
The present invention relates to a method of forming a thin film in a semiconductor device. According the method, the thin film is formed by alternately repeating an atomic layer deposition (ALD) method and a plasma enhanced atomic layer deposition (PEALD) method and further by adjusting the ratio of repetition times of the methods, so that it is possible to adjust and estimate the growth rate, density, and material properties such as refraction index, dielectric constant, electric resistance, etc.
摘要:
Provided are a thermoelectric device using radiant heat as a heat source and a method of fabricating the same. In the thermoelectric device, an anti-reflection layer formed on a heat absorption layer causes as much radiant light as possible to be absorbed by the heat absorption layer without being reflected to the outside so that the radiant heat absorption efficiency can be improved. Also, in the thermoelectric device, an insulating layer formed on a heat dissipation layer and a first reflection layer formed on the insulating layer can prevent external radiant heat from being absorbed by the heat dissipation layer, and as much radiant heat transferred to the heat dissipation layer as possible can be dissipated away from the heat dissipation layer by a second reflection layer thermally connected with the heat dissipation layer so that the radiant heat emission efficiency can be improved.
摘要:
Disclosed are vacuum window glazing including a solar cell function and a manufacturing method thereof. The vacuum window glazing includes a first sheet glass, a second sheet glass that is vacuum-bonded to the first sheet glass; a vacuum layer that is formed between the first sheet glass and the second sheet glass; and a solar cell panel that is formed on a surface of the second sheet glass in a direction of the vacuum layer. By this configuration, power can be produced through the solar cell formed within the vacuum window glazing while more increasing the heat insulation effect of the vacuum window glazing, and the cooling and heating efficiency of the building can be greatly improved using the outer wall covered with glass.