Abstract:
Micro-fluid devices and methods for their use are provided. The subject devices are characterized by the presence of at least one micro-valve comprising a phase reversible material, e.g. a reversible gel, that reversibly changes its physical state in response to an applied stimulus, e.g. a thermoreversible gel. In using the subject device, fluid flow along a flow path of the device is modulated by applying an appropriate stimulus, e.g. changing the temperature, to the microvalve. The subject devices find use in a variety of applications, including micro-analytical applications.
Abstract:
Methods for selectively separating at least one component from a multi-component componant fluidic sample are provided. In the subject methods, the fluidic sample is introduced into a micro-fluidic device that includes at least one micro-valve made up of a phase reversible material. The multi-component fluidic sample is then contacted with the microvalve in a microfluidic device under conditions sufficient for the at least one component to enter the microvalve, while the remaining constituents of the fluidic sample remain outside of the microvalve. Also provided are kits for use in practicing the subject methods, where the kits include at least a microfluidic device having a microvalve and instructional material (or means for obtaining the same) on how to use the device in the subject methods. The subject devices find use in a variety of applications, including sample desalting and concentration applications.
Abstract:
The present invention relates to microdevices for introducing a small volume of a fluid sample into an ionization chamber. The microdevices are constructed from a substrate having a first and second opposing surfaces, the substrate having a microchannel formed in the first surface, and a cover plate arranged over the first surface, the cover plate in combination with the microchannel defining a conduit for conveying the sample. A sample inlet port is provided in fluid communication with the microchannel, wherein the sample inlet port allows the fluid sample from an external source to be conveyed in a defined sample flow path that travels, in order, through the sample inlet port, the conduit and a sample outlet port and into the ionization chamber. Optionally, the fluid sample undergoes a chemical or biochemical reaction within an integrated portion of the microdevice before reaching the ionization chamber. A nebulizing means nebulizes the fluid sample in a nebulizing region adjacent to the sample outlet port. The invention also relates to a method for introducing a fluid sample using the microdevice.
Abstract:
“A miniaturized planar device is described for use in a liquid phase analysis system. The device comprises a separation compartment that is in fluidic communication with a make-up flow channel and a channel compartment that terminates in an on-device mass spectrometer delivery means. The device is formed by microfabrication of microstructures in novel support substrates.”
Abstract:
An ion source a first ionizer comprising: an electrospray needle comprising a tip; and a conduit disposed annularly about the needle and configured to pass an inert gas in proximity of the tip to nebulize a fluid emerging from the tip, the nebulized fluid comprising analytes and a mobile phase. The ion source comprises a capillary in tandem with the first ionizer and configured to receive the droplets; a heater configured to heat the capillary to a temperature at which mobile phase vaporizes; and a second ionizer in tandem with the capillary and configured to receive the vaporized mobile phase and the analytes. A method is also described.
Abstract:
A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.
Abstract:
A behavioral targeting system determines user profiles from online activity. The system includes a plurality of models that define parameters for determining a user profile score. Event information, which comprises on-line activity of the user, is received at an entity. To generate a user profile score, a model is selected. The model comprises recency, intensity and frequency dimension parameters. The behavioral targeting system generates a user profile score for a target objective, such as brand advertising or direct response advertising. The parameters from the model are applied to generate the user profile score in a category. The behavioral targeting system has application for use in ad serving to on-line users.
Abstract:
A system for controlling fluid flow in a microfluidic circuit located in a liquid chromatograph includes at least one microfluidic channel and a flexible membrane adjacent the at least one microfluidic channel, wherein when actuated, the flexible membrane deflects into the microfluidic channel, thus impeding fluid flow in the microfluidic channel.
Abstract:
Fluidic separation devices and methods with reduced sample broadening are provided. A column is located downstream from a holding chamber, and a flow providing means provides fluid flow effective to convey a sample along a flow path that extends from the holding chamber into the separation column. The sample is typically focused in the flow path upstream from the separation column. Optionally, the invention may be employed with electrospray mass spectrometry and in microfluidic applications.