Abstract:
Micro-fluid devices and methods for their use are provided. The subject devices are characterized by the presence of at least one micro-valve comprising a phase reversible material, e.g. a reversible gel, that reversibly changes its physical state in response to an applied stimulus, e.g. a thermoreversible gel. In using the subject device, fluid flow along a flow path of the device is modulated by applying an appropriate stimulus, e.g. changing the temperature, to the microvalve. The subject devices find use in a variety of applications, including micro-analytical applications.
Abstract:
Methods and compositions for modifying the surface of a polymeric substrate are provided. In the subject methods, at least a portion of the surface of the polymeric substrate is contacted with a biofouling resistant surfactant composition. At least a portion of the surfactant molecules of the composition are end modified with a non-reactive, charged end group that is charge stable over a pH range of about 2 to 12. The subject methods and compositions find particular use with electrophoretic devices, such as capillary electrophoretic devices.
Abstract:
Methods and compositions for modifying the surface of a polymeric substrate are provided. In the subject methods, at least a portion of the surface of the polymeric substrate is contacted with a biofouling resistant surfactant composition. At least a portion of the surfactant molecules of the composition are end modified with a non-reactive, charged end group that is charge stable over a pH range of a bout 2 to 12. The subject methods and compositions find particular use with electrophoretic devices, such as capillary electrophoretic devices.
Abstract:
A microanalytical device is provided for conducting chemical processes using small amounts of fluid. The devices include microstructures, e.g., microcavities, microchannels and the like, that are laser ablated or otherwise formed in a support substrate, and can be used in a variety of chemical and biochemical methods, including chromatographic, electrophoretic and electrochromatographic separations, screening and diagnostics, and chemical and biochemical synthesis. The devices are formed from a material that is thermally and chemically stable and resistant to biofouling, significantly reducing electroosmotic flow and unwanted adsorption of solute. Preferred materials are polymeric.
Abstract:
A miniaturized total analysis system with an in-line NMR detection compartment and an NMR rf microcoil detector is described for use in liquid phase analysis. The device is formed by microfabrication of microstructures in novel support substrates. The NMR detector coil may be fabricated directly in the support body at the point of detection or, alternatively, may be formed as part of a modular structure that is insertable into the device at the point of detection. In addition, an integrated device for sample preparation and NMR detection is provided comprising the miniaturized total analysis system and a miniature magnet configured to accept the miniaturized total analysis system, wherein the device is capable of generating an NMR spectrum. The invention herein is used for the analysis of small and/or macromolecular and/or other solutes in the liquid phase.
Abstract:
A method for treating capillary walls exposable to protein solutes is provided that promotes reversible interactions between the protein solutes and the wall. Thus a small bore capillary tube, useful for reproducible protein electrophoretic separations, includes an interfacial phase comprising agarose that is bonded to the bore. Pretreatment of the capillary walls with silylation reagents forms an intermediate layer that provides a determinable cathodic electroosmotic flow magnitude that remains constant even if the buffer pH fluctuates between 4-7. The modified capillaries can be used repeatedly and they exhibit selectivity in protein separations.
Abstract:
A miniaturized column analytical apparatus having a miniaturized column device containing a body with an elongate separation compartment is provided. Two or more sets of spaced apart antennas are positioned along the elongate separation compartment. The elongate separation compartment has first and second opposing sides along its elongate dimension. Each set of antenna contains a plurality of antennas. One antenna from each set is associated with at least one antenna from each of the other sets to form repeating sequences of antennas along the separation compartment on the opposing sides of the separation compartment. Each set of the antennas is associated with a different oscillating electrical potential to provide a plurality of oscillating electric fields along the elongate separation compartment to draw a target substance along the elongate separation compartment toward an exit end of the separation compartment. The detector can detect a target substance passing out of the elongate separation compartment.
Abstract:
A method is provided for modifying a porous chromatographic material such as silica, alumina, thoria, titania or magnesia, which involves the steps of halogenating the surface hydroxyl groups of such material, and reacting the halogenated surface with a suitable alkylation reagent. The method gives a direct surface-to-carbon linkage in a high-yield reaction.
Abstract:
A method is provided for preparing high-surface area texturing of a substrate using methods by which material from a substrate is subtracted from or added to the surface of the substrate. In one embodiment, the method is a subtractive lithographic method that involves exposing a laser-ablatable substrate, such as a polymeric or ceramic substrate, to laser light. A mask may be used to define the pattern of light incident on the substrate. High-surface area textured substrates, in particular, miniaturized planar analysis devices having high-surface area textured features, prepared by the methods disclosed herein are also provided. A method by which the high-surface area textured substrate or the miniaturized planar analysis device is used as a master from which replicate copies thereof may be made is also provided.
Abstract:
A miniaturized total analysis system (".mu.-TAS") comprising a miniaturized planar column device is described for use in liquid phase analysis. The .mu.-TAS comprises microstructures fabricated by laser ablation in a variety of novel support substrates. The .mu.-TAS includes associated laser-ablated features required for integrated sample analysis, such as analyte detection means and fluid communication means. .mu.-TAS constructed according to the invention is useful in any analysis system for detecting and analyzing small and/or macromolecular solutes in the liquid phase and may employ chromatographic separation means, electrophoretic separation means, electrochromatographic separation means, or combinations thereof.
Abstract translation:描述了包括小型化平面柱装置的小型化总分析系统(“mu-TAS”)用于液相分析。 mu-TAS包括通过在各种新型支撑衬底中的激光烧蚀制造的微观结构。 mu -TAS包括用于集成样品分析所需的相关激光烧蚀特征,例如分析物检测装置和流体连通装置。 根据本发明构建的mu-TAS可用于检测和分析液相中的小分子和/或大分子溶质的任何分析系统,并且可以使用色谱分离装置,电泳分离装置,电色谱分离装置或其组合。