摘要:
Methods and compositions for electro-chemical-mechanical polishing (e-CMP) of silicon chip interconnect materials, such as copper, are provided. The methods include the use of compositions according to the invention in combination with pads having various configurations.
摘要:
An apparatus for plating and planarizing metal on a substrate includes a plurality of dispensing segments, each having at least one hole for dispensing electroplating solution onto the substrate. The dispensing segments form a circular counterelectrode and are movable with respect to each other during an electroplating process, so that the counterelectrode has a variable diameter. The electroplating solution is thus dispensed on an annular portion of the substrate having a diameter corresponding to the diameter of the counterelectrode; accordingly, the variable-diameter counterelectrode permits localized delivery of the plating solution to the substrate.
摘要:
Patterned copper structures are fabricated by selectively capping the copper employing selective etching and/or selective electroplating in the presence of a liner material. Apparatus for addressing the problem of an increased resistive path as electrolyte during electroetching and/or electroplating flows from the wafer edge inwards is provided.
摘要:
A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
摘要:
Patterned copper structures are fabricated by selectively capping the copper employing selective etching and/or selective electroplating in the presence of a liner material. Apparatus for addressing the problem of an increased resistive path as electrolyte during electroetching and/or electroplating flows from the wafer edge inwards is provided.
摘要:
A method of forming an inductor. The method includes: forming a dielectric layer on a substrate; forming a lower trench in the dielectric layer; forming a liner in the lower trench and on the dielectric layer; forming a Cu seed layer over the liner; forming a resist layer on the Cu seed layer; forming an upper trench in the resist layer; electroplating Cu to completely fill the lower trench and at least partially fill the upper trench; removing the resist layer; selectively forming a passivation layer on all exposed Cu surfaces; selectively removing the Cu seed layer from regions of the liner; and removing the thus exposed regions of the liner from the dielectric layer, wherein a top surface of the inductor extends above a top surface of the dielectric layer, the passivation layer remaining on regions of sidewalls of the inductor above the top surface of the dielectric layer.
摘要:
A method of forming an inductor. The method including: (a) forming a dielectric layer on a top surface of a substrate; after (a), (b) forming a lower trench in the dielectric layer; after (b), (c) forming a resist layer on a top surface of the dielectric layer; after (c), (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and after (d), (e) completely filling the lower trench and at least partially filling the upper trench with a conductor in order to form the inductor.
摘要:
An inductor and a method of forming and the inductor, the method including: (a) providing a semiconductor substrate; (b) forming a dielectric layer on a top surface of the substrate; (c) forming a lower trench in the dielectric layer; (d) forming a resist layer on a top surface of the dielectric layer; (e) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and (f) completely filling the lower trench at least partially filling the upper trench with a conductor in order to form the inductor. The inductor including a top surface, a bottom surface and sidewalls, a lower portion of said inductor extending a fixed distance into a dielectric layer formed on a semiconductor substrate and an upper portion extending above said dielectric layer; and means to electrically contact said inductor.
摘要:
Interconnect structures with copper conductors being at least substantially free of internal seams or voids are obtained employing an electroplating copper bath containing dissolved cupric salt wherein the concentration of the salt is at least about 0.4 molar and up to about 0.5 molar concentration of an acid. Also provided are copper damascene structures having an aspect ratio of greater than about 3 and a width of less than about 0.275 μm and via openings filled with electroplated copper than is substantially free of internal seams or voids.
摘要:
An acidic electrolytic solution for use in the electrodeposition of copper-rich alloys on a substrate, the less noble component being incorporated by underpotential deposition. The solution includes a first salt containing copper cations; a second salt containing cations of a metal less noble than copper; and an acid electrolyte (e.g., methane sulfonic acid) such that at typical current densities the potential is in the range of underpotential deposition of the less noble metal on the copper.Also provided is a process for using the acidic electrolytic solution. The process includes the following steps: (1) selecting a copper-rich alloy having, as the minor component, a metal that is less noble than copper and can form an underpotential deposition layer on copper; (2) selecting an acid electrolyte such that at typical current densities the potential is in the range of underpotential deposition of the metal on the copper; (3) providing in the acid solution simple salts of copper and of the less noble metal; and 4) applying a current between a cathode and an anode placed in the plating solution to plate the alloy on the cathode.