Abstract:
Semiconductor devices having one or more vias filled with an electrically conductive material are disclosed herein. In one embodiment, a semiconductor device includes a semiconductor substrate having a first side, a plurality of circuit elements proximate to the first side, and a second side opposite the first side. A via can extend between the first and second sides, and a conductive material in the via can extend beyond the second side of the substrate to define a projecting portion of the conductive material. The semiconductor device can have a tall conductive pillar formed over the second side and surrounding the projecting portion of the conductive material, and a short conductive pad formed over the first side and electrically coupled to the conductive material in the via.
Abstract:
Semiconductor devices having a through-silicon-via and methods of forming the same are described herein. As an example, a semiconductor device may include a substrate material, a through-silicon-via protrusion extending from the substrate material, a first dielectric material formed on the substrate material, a second dielectric material formed on the first dielectric material, and an interconnect formed on the through-silicon-via protrusion, where the interconnect formed is in an opening in the second dielectric material.
Abstract:
Interconnect structures with improved conductive properties are disclosed herein. In one embodiment, an interconnect structure can include a first conductive member coupled to a first semiconductor die and a second conductive member coupled to second semiconductor die. The first conductive member includes a recessed surface defining a depression. The second conductive member extends at least partially into the depression of the first conductive member. A bond material within the depression can at least partially encapsulate the second conductive member and thereby bond the second conductive member to the first conductive member.
Abstract:
Semiconductor device assemblies with underfill containment cavities are disclosed herein. In one embodiment, a semiconductor device assembly can include a first semiconductor die having a base region formed from a substrate material, a recessed surface along the base region, a peripheral region formed from the substrate material and projecting from the base region, and a sidewall surface along the peripheral region and defining a cavity with the sidewall surface in the peripheral region. The semiconductor device assembly further includes a thermal transfer structure attached to the peripheral region of the first die adjacent the cavity, and an underfill material at least partially filling the cavity and including a fillet between the peripheral region and the stack of second semiconductor dies.
Abstract:
Systems and methods for uniform back side exposure of through-silicon vias (TSVs) are disclosed. In one embodiment, a semiconductor device comprises a substrate having a front side with circuit elements formed thereon, and a back side opposite the front side. A TSV extends between the front side and the back side of the substrate, and a dummy feature is disposed over the back side of the substrate, the dummy feature laterally spaced apart from the TSV and substantially coplanar with the TSV. In another embodiment, a semiconductor device comprises a substrate having a TSV formed therethrough, with a control material disposed over the back side of the substrate, the TSV substantially coplanar with the control material.
Abstract:
Systems and methods for uniform back side exposure of through-silicon vias (TSVs) are disclosed. In one embodiment, a semiconductor device comprises a substrate having a front side with circuit elements formed thereon, and a back side opposite the front side. A TSV extends between the front side and the back side of the substrate, and a dummy feature is disposed over the back side of the substrate, the dummy feature laterally spaced apart from the TSV and substantially coplanar with the TSV. In another embodiment, a semiconductor device comprises a substrate having a TSV formed therethrough, with a control material disposed over the back side of the substrate, the TSV substantially coplanar with the control material.
Abstract:
Semiconductor devices having a through-silicon-via and methods of forming the same are described herein. As an example, a semiconductor device may include a substrate material, a through-silicon-via protrusion extending from the substrate material, a first dielectric material formed on the substrate material, a second dielectric material formed on the first dielectric material, and an interconnect formed on the through-silicon-via protrusion, where the interconnect formed is in an opening in the second dielectric material.
Abstract:
Interconnect structures with improved conductive properties are disclosed herein. In one embodiment, an interconnect structure can include a first conductive member coupled to a first semiconductor die and a second conductive member coupled to second semiconductor die. The first conductive member includes a recessed surface defining a depression. The second conductive member extends at least partially into the depression of the first conductive member. A bond material within the depression can at least partially encapsulate the second conductive member and thereby bond the second conductive member to the first conductive member.
Abstract:
Semiconductor devices having a through-silicon-via and methods of forming the same are described herein. As an example, a semiconductor device may include a substrate material, a through-silicon-via protrusion extending from the substrate material, a first dielectric material formed on the substrate material, a second dielectric material formed on the first dielectric material, and an interconnect formed on the through-silicon-via protrusion, where the interconnect formed is in an opening in the second dielectric material.
Abstract:
A method of manufacturing a semiconductor device having a conductive substrate having a first surface, a second surface opposite the first surface, and a passivation material covering a portion of the first surface can include applying a seed layer of conductive material to the first surface of the conductive substrate and to the passivation material, the seed layer having a first face opposite the conductive substrate. The method can include forming a plurality of pillars comprising layers of first and second materials. The method can include etching the seed layer to undercut the seed layer between the conductive substrate and the first material of at least one of the pillars. In some embodiments, a cross-sectional area of the seed layer in contact with the passivation material between the first material and the conductive substrate is less than the cross-sectional area of the second material.