Abstract:
A semiconductor laser includes: a first semiconductor layer part including a semiconductor layer of a first conductivity type; an active layer disposed on the first semiconductor layer part; a second semiconductor layer part disposed on the active layer and including a semiconductor layer of a second conductivity type; a third semiconductor layer p100415-0433art disposed on the second semiconductor layer part and including a semiconductor layer containing a first concentration of an impurity of the first conductivity type; and a fourth semiconductor layer part disposed on the third semiconductor layer part and including a semiconductor layer containing a second concentration of the impurity of the first conductivity type, the second concentration being lower than the first concentration. The third semiconductor layer part is directly bonded to the fourth semiconductor layer part. At least one of the third semiconductor layer part or the fourth semiconductor layer part includes a photonic crystal.
Abstract:
A light emitting device can further improve light extraction efficiency. A method of manufacturing such a light emitting device can also prove advantageous. The light emitting device includes a light emitting element, a light-transmissive member which is disposed on a light extracting surface side of the light emitting element, and a reflecting layer disposed on an element bonding surface of the light transmissive member where the light emitting element is disposed and adjacent to the light emitting element. The light-transmissive member, in a plan view, has a planar dimension greater than the light extracting surface of the light emitting element.
Abstract:
A light emitting device can further improve light extraction efficiency. A method of manufacturing such a light emitting device can also prove advantageous. The light emitting device includes a light emitting element, a light-transmissive member which is disposed on a light extracting surface side of the light emitting element, and a reflecting layer disposed on an element bonding surface of the light transmissive member where the light emitting element is disposed and adjacent to the light emitting element. The light-transmissive member, in a plan view, has a planar dimension greater than the light extracting surface of the light emitting element.
Abstract:
A semiconductor device has a light emitting element, and a resin layer; the light emitting element includes a semiconductor laminated body in which a first semiconductor layer and a second semiconductor layer are laminated in sequence, a second electrode connected to the second semiconductor layer on an upper surface of the second semiconductor layer that forms an upper surface of the semiconductor laminated body, and a first electrode connected to the first semiconductor layer on an upper surface of the first semiconductor layer in which a portion of the second semiconductor layer on one surface of the semiconductor laminated body is removed and a portion of the first semiconductor layer is exposed; and the resin layer is configured to cover at least a side surface of the light emitting element, and an upper surface of the resin layer is lower than the upper surface of the semiconductor laminated body.
Abstract:
A light emitting element having a recess-protrusion structure on a substrate is provided. A semiconductor light emitting element 100 has a light emitting structure of a semiconductor 20 on a first main surface of a substrate 10. The first main surface of the substrate 10 has substrate protrusion portion 11, the bottom surface 14 of each protrusion is wider than the top surface 13 thereof in a cross-section, or the top surface 13 is included in the bottom surface 14 in a top view of the substrate. The bottom surface 14 has an approximately polygonal shape, and the top surface 13 has an approximately circular or polygonal shape with more sides than that of the bottom surface 14.
Abstract:
A light emitting apparatus includes: a mount substrate; at least one light emitting device mounted on the mount substrate; a light transparent member, wherein a lower surface of the light transparent member is attached to an upper surface of the at least one light emitting device via at least one adhesive material layer, wherein the light transparent member has a plate shape and is positioned to receive incident light emitted from the light emitting devices, and wherein a lateral surface of the light transparent member is located laterally inward of a lateral surface of the at least one light emitting device; and a covering member that contains a light reflective material and covers at least the lateral surface of the light transparent member.
Abstract:
A semiconductor light emitting element includes a first semiconductor layer, an active layer, a second semiconductor layer, a first conducting layer, a second conducting layer, and an insulating layer. The insulating layer is disposed at least on or above the upper surface of the second conducting layer. Holes are opened at given intervals through the second semiconductor layer to expose the first semiconductor layer at bottom surfaces of the holes. In each of the holes, the insulating layer covers from a side-wall surface of each of the holes to a first region provided on or above the upper surface of the second conducting layer around a top of each of the holes. The first conducting layer covers from the bottom surface of each of the holes to a second region provided over the second conducting layer and the insulating layer around the top of each of the holes.
Abstract:
A light emitting apparatus includes at least one light emitting device; a light transparent member that receives incident light emitted from the light emitting device; and a covering member. The light transparent member is a light conversion member that has an externally exposed light emission surface and a side surface contiguous to the light emission surface. The covering member contains a light reflective material, and covers at least the side surface of said light transparent member. A content of said light reflective material is not less than 30 wt %.
Abstract:
A light emitting element having a recess-protrusion structure on a substrate is provided. A semiconductor light emitting element 100 has a light emitting structure of a semiconductor 20 on a first main surface of a substrate 10. The first main surface of the substrate 10 has substrate protrusion portion 11, the bottom surface 14 of each protrusion is wider than the top surface 13 thereof in a cross-section, or the top surface 13 is included in the bottom surface 14 in a top view of the substrate. The bottom surface 14 has an approximately polygonal shape, and the top surface 13 has an approximately circular or polygonal shape with more sides than that of the bottom surface 14.
Abstract:
A semiconductor light emitting element includes: a first light emitting part comprising: a first n-side nitride semiconductor layer; a first active layer located on the first n-side nitride semiconductor layer; and a first p-side nitride semiconductor layer located on the first active layer; and a second n-side nitride semiconductor layer. A bonding face of the first light emitting part and a bonding face of the second n-side nitride semiconductor layer are directly bonded. At least one void is present between the bonding face of the first light emitting part and the bonding face of the second n-side nitride semiconductor layer.