摘要:
A plurality of photosensitive sections, each having two photosensitive rows, and a plurality of readout sections, each having two readout rows, are alternately distributed in the horizontal direction. The picture element signals of the photosensitive rows each adjacent to each of two readout rows are synthesized for each line. Pseudo-picture element signals are synthesized from the synthesized picture element signals, and the pseudo-picture element signals are used as the picture element signals corresponding to the readout sections.
摘要:
A semiconductor device includes an active region formed in an upper layer portion of a semiconductor layer of a first conductivity type, and a plurality of electric field relaxation layers disposed from an edge of the active region toward the outside so as to surround the active region. The plurality of electric field relaxation layers include a plurality of first electric field relaxation layers and a plurality of second electric field relaxation layers alternately disposed adjacent to each other, the first electric field relaxation layer and the second electric field relaxation layer adjacent to each other forming a set. Impurities of a second conductivity type are implanted to the first electric field relaxation layers at a first surface density, widths of which becoming smaller as apart from the active region. Impurities of the second conductivity type are implanted to the second electric field relaxation layers at a second surface density lower than the first surface density, widths of which becoming larger as apart from the active region.
摘要:
A RESURF layer including a plurality of P-type implantation layers having a low concentration of P-type impurity is formed adjacent to an active region. The RESURF layer includes a first RESURF layer, a second RESURF layer, a third RESURF layer, a fourth RESURF layer, and a fifth RESURF layer that are arranged sequentially from the P-type base side so as to surround the P-type base. The second RESURF layer is configured with small regions having an implantation amount equal to that of the first RESURF layer and small regions having an implantation amount equal to that of the third RESURF layer being alternately arranged in multiple. The fourth RESURF layer is configured with small regions having an implantation amount equal to that of the third RESURF layer and small regions having an implantation amount equal to that of the fifth RESURF layer being alternately arranged in multiple.
摘要:
A silicon carbide semiconductor device including an SBD measuring a temperature of a silicon carbide semiconductor element. The silicon carbide semiconductor device includes a MOSFET formed on a silicon carbide epitaxial substrate, and an SBD section measuring a temperature of the MOSFET. The SBD section includes an n-type cathode region in a surface portion of a silicon carbide drift layer; an anode titanium electrode formed on the cathode region, the electrode serving as a Schottky electrode; an n-type cathode contact region of a higher concentration than that of the cathode region, formed in the surface portion of the silicon carbide drift layer to make contact with the cathode region; a cathode ohmic electrode formed on the cathode contact region; and a first p-type well region formed within the silicon carbide drift layer to surround peripheries of the cathode region and the cathode contact region.
摘要:
A method of manufacturing a semiconductor device is provided in which a semiconductor device including a plurality of FETs having different threshold voltages and gate insulating films with different film thicknesses can be manufactured in a simplified process. Specifically, a first gate insulating film is formed on the main surface of a semiconductor substrate. On the first gate insulating film, a first protection film is formed. In regions A and B in each of which an FET having a second gate insulating film with a film thickness different from that of the first gate insulating film is to be formed, the first gate insulating film and the first protection film are removed to expose the surface of the semiconductor substrate. At the same time, the first protection film is left in regions other than the regions A and B. Using the first protection film as a mask, an impurity is implanted into the semiconductor substrate in the regions A and B.
摘要:
In a semiconductor device having an SOI structure and a method of manufacturing the same, influence by a parasitic transistor can be prevented, and no disadvantage is caused in connection with a manufacturing process. In this semiconductor device, an upper side portion of a semiconductor layer is rounded. Thereby, concentration of an electric field at the upper side portion of the semiconductor layer can be prevented. As a result, lowering of a threshold voltage of a parasitic transistor can be prevented, so that the parasitic transistor does not adversely affect subthreshold characteristics of a regular transistor. Owing to provision of a concavity of a U-shaped section, generation of etching residue can be prevented when etching a gate electrode for patterning the same. Thereby, a disadvantage is not caused in connection with the manufacturing process.
摘要:
In a semiconductor device having an SOI structure and a method of manufacturing the same, influence by a parasitic transistor can be prevented, and no disadvantage is caused in connection with a manufacturing process. In this semiconductor device, an upper side portion of a semiconductor layer is rounded. Thereby, concentration of an electric field at the upper side portion of the semiconductor layer can be prevented. As a result, lowering of a threshold voltage of a parasitic transistor can be prevented, so that the parasitic transistor does not adversely affect subthreshold characteristics of a regular transistor. Owing to provision of a concavity of a U-shaped section, generation of etching residue can be prevented when etching a gate electrode for patterning the same. Thereby, a disadvantage is not caused in connection with the manufacturing process.
摘要:
A trench-gate type semiconductor device that can prevent breakdown of a gate insulating film caused by a displacement current flowing into a protective diffusion layer at a portion of a trench underlying a gate electrode at a turn-off time and simultaneously improves a current density by narrowing a cell pitch. The semiconductor device includes a gate electrode embedded into a trench penetrating a base region. The gate electrode is disposed into a lattice shape in a planar view, and a protective diffusion layer is formed in a drift layer at the portion underlying thereof. At least one of blocks divided by the gate electrode is a protective contact region on which the trench is entirely formed. A protective contact for connecting the protective diffusion layer at a bottom portion of the trench and a source electrode is disposed on the protective contact region.
摘要:
A source region of a MOSFET includes: a source contact region connected to a source pad; a source extension region adjacent to a channel region in a well region; and a source resistance control region arranged between the source extension region and the source contact region. The source resistance control region is different in an impurity concentration from the source extension region and the source contact region. These three regions are connected in series between the source pad and the channel region in the well region.
摘要:
A semiconductor device includes a semiconductor substrate of a first conductivity type, a drift layer of the first conductivity type which is formed on a first main surface of the semiconductor substrate, a second well region of a second conductivity type which is formed to surround a cell region of the drift layer, and a source pad for electrically connecting the second well regions and a source region of the cell region through a first well contact hole provided to penetrate a gate insulating film on the second well region, a second well contact hole provided to penetrate a field insulating film on the second well region and a source contact hole.