Abstract:
A laser component includes a housing that includes a base section including a top side and an underside, wherein a plurality of electrical soldering contact pads are configured at the underside of the base section, the electrical soldering contact pads enabling surface mounting of the laser component, a plurality of electrical chip contact pads are configured at the top side of the base section and electrically conductively connect to the soldering contact pads, the housing includes a cavity adjoining the top side of the base section, and a laser chip is arranged in the cavity and electrically conductively connects to at least some of the chip contact pads.
Abstract:
An embodiment optoelectronic semiconductor device includes a housing having a leadframe with a first and second connection conductor. The housing further has a housing body surrounding the leadframe in one or more regions. The housing body extends in a vertical direction between a mounting side of the housing body and a front side of the housing body opposite the mounting side. The first connection conductor has a recess. A semiconductor chip configured to generate radiation is arranged within the housing, and the semiconductor chip is disposed in the recess and is affixed to the first connection conductor within the recess. A side face of the recess forms a reflector for reflecting the generated radiation. The first connection conductor protrudes from the housing body at the mounting side. The semiconductor chip is, in at least some regions, free of an encapsulation material adjoining the semiconductor chip.
Abstract:
A radiation-emitting component is specified, having a metallic carrier body (1), which comprises at least two connection locations (1a, 1b) for making electrical contact with the component, a laser diode chip (2), which is fixed to the metallic carrier body (1) and is electrically conductively connected to the at least two connection locations (1a, 1b), a housing (3), which surrounds the metallic carrier body (1) in places, wherein the housing (3) is formed with a plastic, the connection locations (1a, 1b) extend in each case at least. in places along a bottom face (3a) and a side face (3b) of the housing (3), said side face running transversely with respect to the bottom face, and the component is surface-mountable by means of the connection locations (1a, 1b) in such a way that the bottom face (3a) or the side face (3b) forms a mounting face of the component.
Abstract:
An embodiment optoelectronic semiconductor device includes a housing having a leadframe with a first and second connection conductor. The housing further has a housing body surrounding the leadframe in one or more regions. The housing body extends in a vertical direction between a mounting side of the housing body and a front side of the housing body opposite the mounting side. The first connection conductor has a recess. A semiconductor chip configured to generate radiation is arranged within the housing, and the semiconductor chip is disposed in the recess and is affixed to the first connection conductor within the recess. A side face of the recess forms a reflector for reflecting the generated radiation. The first connection conductor protrudes from the housing body at the mounting side. The semiconductor chip is, in at least some regions, free of an encapsulation material adjoining the semiconductor chip.
Abstract:
A housing for a semiconductor chip has a front side and a rear side opposite the front side, wherein the front side has a fastening area for the semiconductor chip; the rear side has a mounting area to mount the housing, wherein the mounting area runs obliquely to the fastening area; and the rear side has a resting area running parallel to the fastening area.
Abstract:
An optoelectronic semiconductor component includes a lead frame with two lead frame parts and an optoelectronic semiconductor chip. The semiconductor chip is fitted to a first of the lead frame parts. A radiation-transmissive potting body of the semiconductor component mechanically connects the lead frame parts to one another. The potting body is set up for beam shaping. The first lead frame part has a reflector trough with a base surface on which the semiconductor chip is mounted. The reflector trough has a lateral surface with three sections. When seen in a plan view of the base surface, the sections revolve around the base surface and follow one another in a direction away from the base surface. In the first section, closest to the base surface, the lateral surface is oriented perpendicular to the base surface.
Abstract:
A semiconductor laser device is specified comprising an edge emitting semiconductor laser diode, which emits laser light along a horizontal direction during operation, a reflector element, which deflects a first part of the laser light in a vertical direction, while a second part of the laser light continues to propagate in the horizontal direction, and a detector element, which is arranged at least partly in a beam path of the second part of the laser light. An optoelectronic beam deflection element for a semiconductor laser device is furthermore specified.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip that emits electromagnetic radiation, arranged in a housing, wherein the housing has an outer wall face and an exit face transparent to the electromagnetic radiation, the exit face is set back relative to the outer wall face in a direction of an interior of the housing, the optoelectronic semiconductor chip is arranged such that radiation emitted by the optoelectronic semiconductor chip in an emission direction can emerge from the optoelectronic component through the exit face, and the outer wall face has separating marks and the exit face is free of separating marks.
Abstract:
A housing for a semiconductor chip has a front side and a rear side opposite the front side, wherein the front side has a fastening area for the semiconductor chip; the rear side has a mounting area to mount the housing, wherein the mounting area runs obliquely to the fastening area; and the rear side has a resting area running parallel to the fastening area.
Abstract:
A radiation-emitting component is specified, having a metallic carrier body (1), which comprises at least two connection locations (1a, 1b) for making electrical contact with the component, a laser diode chip (2), which is fixed to the metallic carrier body (1) and is electrically conductively connected to the at least two connection locations (1a, 1b), a housing (3), which surrounds the metallic carrier body (1) in places, wherein the housing (3) is formed with a plastic, the connection locations (1a, 1b) extend in each case at least in places along a bottom face (3a) and a side face (3b) of the housing (3), said side face running transversely with respect to the bottom face, and the component is surface-mountable by means of the connection locations (1a, 1b) in such a way that the bottom face (3a) or the side face (3b) forms a mounting face of the component.