Abstract:
A flexible substrate includes a plurality of unit wiring structures. Each of the unit wiring structures includes: a central section; and at least four curved strips disposed at an outer side of the central section, each of the curved strips having a first end connected to the central section. The central section includes: an insulation layer; interlayer connection via that passes through the insulation layer; first wiring section connected to the interlayer connection via; and second wiring section electrically connected to the first wiring section by way of the interlayer connection via. The first wiring section, insulation layer and second wiring section are disposed in this order, and two of the at least four curved strips extending in a first direction are connected to the first wiring section, other two of the at least four curved strips extending in a second direction are connected to the second wiring section.
Abstract:
A stretchable flexible substrate according to one aspect of the present disclosure includes: an electronic component; a first insulating layer located around the electronic component and having first and second main surfaces facing each other; a first metal layer that is in contact with the first main surface; a second metal layer that is in contact with the second main surface and electrically connected to the electronic component; and a second insulating layer that seals the electronic component, first insulating layer, and second metal layer, in plan view, a curved wiring portion extending from a central portion made up of at least the electronic component, portions of the first insulating layer and first and second metal layers, the curved wiring portion being made up of at least other portions of the first insulating layer, first and second metal layers, and the curved wiring portion being curved at least partially.
Abstract:
A flexible substrate includes unit wiring structures including first and second unit wiring structures that are mutually adjacent. Each of the unit wiring structures includes a central section and one or more strips. Each of the one or more strips has first and second ends. The first end is connected to the central section. The second end of at least one of the one or more strips of the first unit wiring structure and the second end of at least one of the one or more strips of the second unit wiring structure are mutually connected. The flexible substrate includes a gap between a side surface of the mutually connected strips and a side surface of the central section of the first or the second unit wiring structure, and/or between a side surface of the mutually connected strips and a side surface of another strip.
Abstract:
A flexible substrate is provided with: a stretchable sheet; a member located on the sheet; and a stretchable strip connected to the member, and located on the sheet. When the amount of extension of the sheet is equal to or less than a predetermined value, the sheet has a first elastic modulus, and when the amount of extension of the sheet exceeds the predetermined value, the sheet has a second elastic modulus that is greater than the first elastic modulus and greater than the elastic modulus of the strip.
Abstract:
A flexible optical substrate allows incident light or optical signals to be propagated or transmitted the flexible optical substrate. The flexible optical substrate includes unitary elastic structures. Each of the unitary elastic structures includes a film-like resin material that has a central portion and one or more strips provided outwardly of the central portion. One end of each of the one or more strips is connected to the central portion. Each of the unitary elastic structures has a clearance. Two adjacent unitary elastic structures are linked by at least part of the strips of the two adjacent unitary elastic structures.
Abstract:
There is provided a light-emitting device comprising a light-emitting element, an element electrode, an extending-wiring electrode and a support. In the light-emitting device of the present invention, the light-emitting element is supported and secured by the support in such a form that a principal surface of the support and an active surface of the light-emitting element are approximately flush with each other. Further, the extending-wiring electrode is in a surface contact with the element electrode such that the extending-wiring electrode extends beyond a periphery of the light-emitting element to the principal surface of the support, wholly covering the active surface of the light-emitting element.
Abstract:
An electronic device includes: electronic elements; expandable and contractible conductors each disposed between two of the electronic elements adjacent to each other; a seal which covers the electronic elements and the conductors except principal surfaces of the electronic elements and first surfaces of the conductors, the principal surfaces of the electronic elements and the first surfaces of the conductors being present on a same plane on which surfaces of the seal are present; and leading electrode films each of which is attached in a film-like form to three surfaces which are the surface of the seal positioned between one of the electronic elements and one of the conductors, the first surface of the conductor, and part of the principal surface of the electronic element, to electrically connect the electronic element and the conductor through the leading electrode film.
Abstract:
A flexible touch sensor comprises: a first sheet material that has a first major surface, and that has a cushioning property; a second sheet material that includes a conductive material, and that is disposed on the first major surface of the first sheet material; and a conductive wire that is disposed on the first major surface of the first sheet material, and that is sunk into the first sheet material.
Abstract:
A flexible substrate includes a plurality of unit wiring structures and an insulation sheet on which the plurality of unit wiring structures are disposed. Each of the plurality of unit wiring structures includes a central section and a plurality of strips disposed at an outer side of the central section. Each of the plurality of strips has a first end and a second end, and is curved along an outer periphery of at least part of the central section, the first end connected to the central section. The plurality of strips in each of the plurality of unit wiring structures curve in a clockwise or a counterclockwise manner with the central section as a center of rotation. The plurality of unit wiring structures include at least four unit wiring structures arranged in a two-dimensional manner.
Abstract:
A tactile sensor includes: a first sheet having at least either flexibility or elasticity; and a second sheet having at least either flexibility or elasticity and having a first surface facing the first sheet and a second surface opposite to the first surface. The second surface includes a plurality of protruding shapes. Each of the plurality of protruding shapes includes an enclosed space inside, the enclosed space being defined by the first surface of the second sheet and the first sheet. At least one first electrode pattern is disposed on the first sheet in the enclosed space of each of the plurality of protruding shapes. At least one second electrode pattern is disposed on the first surface in the enclosed space of each of the plurality of protruding shapes.