摘要:
A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
摘要:
A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
摘要:
Disclosed is a capacitive electrostatic MEMS RF switch comprised of a lower electrode that acts as both a transmission line and as an actuation electrode. Also, there is an array of one or more fixed beams above the lower electrode that is connected to ground. The lower electrode transmits the RF signal when the top beam or beams are up and when the upper beams are actuated and bent down, the transmission line is shunted to ground ending the RF transmission. A high dielectric constant material is used in the capacitive portion of the switch to achieve a high capacitance per unit area thus reducing the required chip area and enhancing the insertion loss characteristics in the non-actuated state. A gap between beam and lower electrode of less than 1 &mgr;m is incorporated in order to minimize the electrostatic potential (pull-in voltage) required to actuate the switch.
摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
摘要:
A process and structure for enabling the creation of reliable electrical through-via connections in a semiconductor substrate and a process for filling vias. Problems associated with under etch, over etch and flaring of deep Si RIE etched through-vias are mitigated, thereby vastly improving the integrity of the insulation and metallization layers used to convert the through-vias into highly conductive pathways across the Si wafer thickness. By using an insulating collar structure in the substrate in one case and by filling the via in accordance with the invention in another case, whole wafer yield of electrically conductive through vias is greatly enhanced.
摘要:
A process for removing material from a substrate. The material is exposed to an aqueous solution comprising about 4% to about 30% of at least one acid and at least one surfactant.